結果
| 問題 |
No.569 3 x N グリッドのパスの数
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2017-09-17 15:58:41 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 100 ms / 2,000 ms |
| コード長 | 4,134 bytes |
| コンパイル時間 | 1,710 ms |
| コンパイル使用メモリ | 116,348 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-08 01:54:48 |
| 合計ジャッジ時間 | 9,211 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 60 |
ソースコード
#include <iostream>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <cassert>
using namespace std;
constexpr int mod = 1e9 + 7;
struct modint {
int n;
modint(int n = 0) : n(n) {}
};
modint operator+(modint a, modint b) { return modint((a.n += b.n) >= mod ? a.n - mod : a.n); }
modint operator-(modint a, modint b) { return modint((a.n -= b.n) < 0 ? a.n + mod : a.n); }
modint operator*(modint a, modint b) { return modint(1LL * a.n * b.n % mod); }
bool operator<(modint a, modint b) { return a.n < b.n; }
modint &operator+=(modint &a, modint b) { return a = a + b; }
modint &operator-=(modint &a, modint b) { return a = a - b; }
modint &operator*=(modint &a, modint b) { return a = a * b; }
modint modinv(modint n) {
if (n.n == 1) return 1;
return modinv(mod % n.n) * (mod - mod / n.n);
}
modint operator/(modint a, modint b) { return a * modinv(b); }
modint simpath(int n) {
constexpr int H = 4;
vector<pair<int, int>> es;
for (int x = 0; x < n; x++) {
for (int y = 0; y < H; y++) {
if (y + 1 < H) es.emplace_back(x * H + y, x * H + y + 1);
if (x + 1 < n) es.emplace_back(x * H + y, x * H + y + H);
}
}
vector<int> deg(n * H);
for (auto e : es) {
deg[e.first]++;
deg[e.second]++;
}
map<map<int, int>, modint> dp0, dp1;
dp0[{{0, 0}}] = 1;
for (auto e : es) {
const int u = e.first;
const int v = e.second;
deg[u]--;
deg[v]--;
dp1.clear();
for (auto kv : dp0) {
map<int, int> mate1 = kv.first;
if (!kv.first.count(v)) mate1[v] = v;
const int mu = mate1[u];
const int mv = mate1[v];
const bool del = deg[u] == 0 && u != 0;
if (del) mate1.erase(u);
if (!del || mu == u || mu == -1) dp1[mate1] += kv.second;
if (mu == v || mu == -1 || mv == -1) continue;
mate1[u] = -1;
mate1[v] = -1;
mate1[mu] = mv;
mate1[mv] = mu;
if (del) mate1.erase(u);
if (!del || mu != u) dp1[mate1] += kv.second;
}
swap(dp0, dp1);
}
for (auto kv : dp0) {
auto mate = kv.first;
if (mate[H * n - 1] == 0) return kv.second;
}
return -1;
}
// ref: https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm
vector<modint> berlekamp_massey(vector<modint> s) {
const int N = s.size();
vector<modint> C(N);
vector<modint> B(N);
C[0] = 1;
B[0] = 1;
int L = 0;
int m = 1;
modint b = 1;
for (int n = 0; n < N; n++) {
modint d = s[n];
for (int i = 1; i <= L; i++) d += C[i] * s[n - i];
if (d.n == 0) {
m++;
} else if (2 * L <= n) {
auto T = C;
for (int i = 0; i + m < N; i++) C[i + m] -= B[i] * (d / b);
L = n + 1 - L;
B = T;
b = d;
m = 1;
} else {
for (int i = 0; i + m < N; i++) C[i + m] -= B[i] * (d / b);
m++;
}
}
C.resize(L + 1);
reverse(C.begin(), C.end());
return C;
}
vector<modint> poly_mod(vector<modint> a, const vector<modint> &m) {
const int n = m.size();
for (int i = a.size() - 1; i >= m.size(); i--) {
for (int j = 0; j < m.size(); j++) {
a[i - n + j] += a[i] * m[j];
}
}
a.resize(m.size());
return a;
}
// a*b mod m
vector<modint> poly_mul(const vector<modint> &a, const vector<modint> &b, const vector<modint> &m) {
vector<modint> ret(a.size() + b.size() - 1);
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < b.size(); j++) {
ret[i + j] += a[i] * b[j];
}
}
return poly_mod(ret, m);
}
// x^n mod m
vector<modint> nth_power(long long n, const vector<modint> &m) {
vector<modint> ret(1);
vector<modint> x(2);
ret[0] = x[1] = 1;
while (n > 0) {
if (n & 1) ret = poly_mul(ret, x, m);
x = poly_mul(x, x, m);
n /= 2;
}
return poly_mod(ret, m);
}
int main() {
vector<modint> a(30);
for (int i = 0; i < a.size(); i++) {
a[i] = simpath(i + 1);
}
vector<modint> m = berlekamp_massey(a);
m.pop_back();
for (int i = 0; i < m.size(); i++) {
m[i] *= mod - 1;
}
long long n;
cin >> n;
auto x = nth_power(n, m);
modint ans;
for (int i = 0; i < x.size(); i++) {
ans += x[i] * a[i];
}
cout << ans.n << endl;
}