結果

問題 No.575 n! / m / m / m...
ユーザー りあんりあん
提出日時 2017-10-06 23:56:47
言語 C#(csc)
(csc 3.9.0)
結果
WA  
実行時間 -
コード長 15,131 bytes
コンパイル時間 1,102 ms
コンパイル使用メモリ 113,920 KB
実行使用メモリ 18,944 KB
最終ジャッジ日時 2024-11-17 02:17:57
合計ジャッジ時間 2,952 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 25 ms
18,688 KB
testcase_01 AC 24 ms
18,688 KB
testcase_02 AC 25 ms
18,560 KB
testcase_03 AC 24 ms
18,688 KB
testcase_04 AC 25 ms
18,688 KB
testcase_05 AC 25 ms
18,816 KB
testcase_06 AC 26 ms
18,816 KB
testcase_07 AC 25 ms
18,688 KB
testcase_08 AC 26 ms
18,560 KB
testcase_09 AC 25 ms
18,816 KB
testcase_10 AC 24 ms
18,688 KB
testcase_11 AC 25 ms
18,816 KB
testcase_12 AC 25 ms
18,816 KB
testcase_13 AC 25 ms
18,816 KB
testcase_14 AC 26 ms
18,688 KB
testcase_15 AC 24 ms
18,688 KB
testcase_16 AC 25 ms
18,688 KB
testcase_17 AC 25 ms
18,816 KB
testcase_18 AC 26 ms
18,688 KB
testcase_19 AC 27 ms
18,816 KB
testcase_20 AC 26 ms
18,688 KB
testcase_21 AC 25 ms
18,688 KB
testcase_22 WA -
testcase_23 AC 36 ms
18,688 KB
testcase_24 WA -
testcase_25 AC 35 ms
18,944 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc)
Copyright (C) Microsoft Corporation. All rights reserved.

ソースコード

diff #

using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;
using System.IO;
using System.Text;
using System.Diagnostics;

using static util;
using P = pair<int, int>;

using Binary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.BinaryExpression>;
using Unary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.UnaryExpression>;

class Program
{
    static StreamWriter sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false };
    static Scan sc = new Scan();
    const int M = 1000000007;
    const double eps = 1e-11;
    static readonly int[] dd = { 0, 1, 0, -1, 0 };
    static void Main()
    {
        long n, m;
        sc.Multi(out n, out m);
        var tmp = m;
        long min = M;
        for (long i = 2; i * i <= m; i++)
        {
            if (m % i == 0) {
                int c = 0;
                while (m % i == 0)
                {
                    ++c;
                    m /= i;
                }
                long cc = 0;
                long a = i;
                while (a <= n)
                {
                    cc += n / a;
                    a *= i;
                }
                min = Math.Min(min, cc / c);
            }
        }
        if (m > 1)
        {
            long cc = 0;
            long a = m;
            while (a <= n)
            {
                cc += n / a;
                a *= m;
            }
            min = Math.Min(min, cc);
        }
        Prt(getperm(n) / BigDouble.pow(tmp, min));
        sw.Flush();
    }
    struct BigDouble
    {
        public double man;
        public long exp;
        void normalize() {
            while (man >= 10) {
                man /= 10;
                ++exp;
            }
            while (man < 1) {
                man *= 10;
                --exp;
            }
        }
        public BigDouble(double a) : this(a, 0) {}
        public BigDouble(double a, long b){
            man = a;
            exp = b;
            normalize();
        }
        public static implicit operator BigDouble(double a) => new BigDouble(a);
        public static BigDouble operator*(BigDouble a, BigDouble b) {
            return new BigDouble(a.man * b.man, a.exp + b.exp);
        }
        public static BigDouble operator/(BigDouble a, BigDouble b) {
            return new BigDouble(a.man / b.man, a.exp - b.exp);
        }
        public static BigDouble operator+(BigDouble a, BigDouble b) {
            if (a.exp >= b.exp)
                return new BigDouble(a.man + b.man * Math.Pow(10, b.exp - a.exp), a.exp);
            else
                return new BigDouble(a.man * Math.Pow(10, a.exp - b.exp) + b.man, b.exp);
        }
        public static BigDouble pow(BigDouble a, long k) {
            if (k == 0) return 1;
            var t = pow(a, k / 2);
            if ((k & 1) == 0) return t * t;
            return t * t * a;
        }
        // a ^ (10^k) = (a^10)^(10^(k - 1))
        public static BigDouble pow10k(BigDouble a, long k) {
            if (k == 0) return a;
            return pow10k(new BigDouble(Math.Pow(a.man, 10), a.exp * 10), k - 1);
        }
        public override string ToString() {
            return man + "e" + exp;
        }
    }
    static BigDouble getperm(long n) {
        BigDouble ret = 1;
        if (n < 10000) {
            for (int i = 2; i <= n; i++)
                ret *= i;

            return ret;
        }
        return Math.Sqrt(Math.PI * 2 * n) * BigDouble.pow(n / Math.E, n) * (1 + 1 / (12.0 * n) + 1 / (288.0 * n * n) - 139 / (51840.0 * n * n * n));
        // ret = n + 109535241009.0 / 48264275462.0;
        // ret = n + 29944523.0 / 19733142.0 / ret;
        // ret = n + 22999.0 / 22737.0 / ret;
        // ret = n + 195.0 / 371.0 / ret;
        // ret = n + 53.0 / 210.0 / ret;
        // ret = n + 1 / 30.0 / ret;
        // ret = 1 / 12.0 / ret;
        // ret += Math.Log(Math.PI * 2) / 2 - n + (n + 0.5) * Math.Log(n);
        // return BigDouble.pow10k(Math.Exp(ret.man), ret.exp);
    }
    static void DBG(string a) { Console.WriteLine(a); }
    static void DBG<T>(IEnumerable<T> a) { DBG(string.Join(" ", a)); }
    static void DBG(params object[] a) { DBG(string.Join(" ", a)); }
    static void Prt(string a) { sw.WriteLine(a); }
    static void Prt<T>(IEnumerable<T> a) { Prt(string.Join(" ", a)); }
    static void Prt(params object[] a) { Prt(string.Join(" ", a)); }

    // for AOJ
    // static string Join<T>(string sep, IEnumerable<T> a) { return string.Join(sep, a.Select(x => x.ToString()).ToArray()); }
    // static void DBG<T>(IEnumerable<T> a) { DBG(Join(" ", a)); }
    // static void DBG(params object[] a) { DBG(Join(" ", a)); }
    // static void Prt<T>(IEnumerable<T> a) { Prt(Join(" ", a)); }
    // static void Prt(params object[] a) { Prt(Join(" ", a)); }
}
class pair<T, U> : IComparable<pair<T, U>> where T : IComparable<T> where U : IComparable<U>
{
    public T v1;
    public U v2;
    public pair(T v1, U v2) {
        this.v1 = v1;
        this.v2 = v2;
    }
    public int CompareTo(pair<T, U> a) {
        return v1.CompareTo(a.v1) != 0 ? v1.CompareTo(a.v1) : v2.CompareTo(a.v2);
    }
    public override string ToString() {
        return v1 + " " + v2;
    }
}
static class util
{
    public static pair<T, U> make_pair<T, U>(T v1, U v2) where T : IComparable<T> where U : IComparable<U> {
        return new pair<T, U>(v1, v2);
    }
    public static T Max<T>(params T[] a) { return a.Max(); }
    public static T Min<T>(params T[] a) { return a.Min(); }
    public static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; }
    public static void swap<T>(this IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; }
    public static T[] copy<T>(this IList<T> a) {
        var ret = new T[a.Count];
        for (int i = 0; i < a.Count; i++) ret[i] = a[i];
        return ret;
    }
}
static class Operator<T>
{
    static readonly ParameterExpression x = Expression.Parameter(typeof(T), "x");
    static readonly ParameterExpression y = Expression.Parameter(typeof(T), "y");
    public static readonly Func<T, T, T> Add = Lambda(Expression.Add);
    public static readonly Func<T, T, T> Subtract = Lambda(Expression.Subtract);
    public static readonly Func<T, T, T> Multiply = Lambda(Expression.Multiply);
    public static readonly Func<T, T, T> Divide = Lambda(Expression.Divide);
    public static readonly Func<T, T> Plus = Lambda(Expression.UnaryPlus);
    public static readonly Func<T, T> Negate = Lambda(Expression.Negate);
    public static Func<T, T, T> Lambda(Binary op) { return Expression.Lambda<Func<T, T, T>>(op(x, y), x, y).Compile(); }
    public static Func<T, T> Lambda(Unary op) { return Expression.Lambda<Func<T, T>>(op(x), x).Compile(); }
}

class Scan
{
    public int Int { get { return int.Parse(Str); } }
    public long Long { get { return long.Parse(Str); } }
    public double Double { get { return double.Parse(Str); } }
    public string Str { get { return Console.ReadLine().Trim(); } }
    public int[] IntArr { get { return StrArr.Select(int.Parse).ToArray(); } }
    public long[] LongArr { get { return StrArr.Select(long.Parse).ToArray(); } }
    public double[] DoubleArr { get { return StrArr.Select(double.Parse).ToArray(); } }
    public string[] StrArr { get { return Str.Split(); } }
    bool eq<T, U>() { return typeof(T).Equals(typeof(U)); }
    T ct<T, U>(U a) { return (T)Convert.ChangeType(a, typeof(T)); }
    T cv<T>(string s) { return eq<T, int>()    ? ct<T, int>(int.Parse(s))
                             : eq<T, long>()   ? ct<T, long>(long.Parse(s))
                             : eq<T, double>() ? ct<T, double>(double.Parse(s))
                             : eq<T, char>()   ? ct<T, char>(s[0])
                                               : ct<T, string>(s); }
    public void Multi<T>(out T a) { a = cv<T>(Str); }
    public void Multi<T, U>(out T a, out U b)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); }
    public void Multi<T, U, V>(out T a, out U b, out V c)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); }
    public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); }
    public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); }
    public void Multi<T, U, V, W, X, Y>(out T a, out U b, out V c, out W d, out X e, out Y f)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); f = cv<Y>(ar[5]); }
    public void Multi<T, U, V, W, X, Y, Z>(out T a, out U b, out V c, out W d, out X e, out Y f, out Z g)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); f = cv<Y>(ar[5]);  g = cv<Z>(ar[6]);}
}
static class mymath
{
    public static long Mod = 1000000007;
    public static bool isprime(long a) {
        if (a < 2) return false;
        for (long i = 2; i * i <= a; i++) if (a % i == 0) return false;
        return true;
    }
    public static bool[] sieve(int n) {
        var p = new bool[n + 1];
        for (int i = 2; i <= n; i++) p[i] = true;
        for (int i = 2; i * i <= n; i++) if (p[i]) for (int j = i * i; j <= n; j += i) p[j] = false;
        return p;
    }
    public static List<int> getprimes(int n) {
        var prs = new List<int>();
        var p = sieve(n);
        for (int i = 2; i <= n; i++) if (p[i]) prs.Add(i);
        return prs;
    }
    public static long[][] E(int n) {
        var ret = new long[n][];
        for (int i = 0; i < n; i++) { ret[i] = new long[n]; ret[i][i] = 1; }
        return ret;
    }
    public static double[][] dE(int n) {
        var ret = new double[n][];
        for (int i = 0; i < n; i++) { ret[i] = new double[n]; ret[i][i] = 1; }
        return ret;
    }
    public static long[][] pow(long[][] A, long n) {
        if (n == 0) return E(A.Length);
        var t = pow(A, n / 2);
        if ((n & 1) == 0) return mul(t, t);
        return mul(mul(t, t), A);
    }
    public static double[][] pow(double[][] A, long n) {
        if (n == 0) return dE(A.Length);
        var t = pow(A, n / 2);
        if ((n & 1) == 0) return mul(t, t);
        return mul(mul(t, t), A);
    }
    public static double dot(double[] x, double[] y) {
        int n = x.Length;
        double ret = 0;
        for (int i = 0; i < n; i++) ret += x[i] * y[i];
        return ret;
    }
    public static double _dot(double[] x, double[] y) {
        int n = x.Length;
        double ret = 0, r = 0;
        for (int i = 0; i < n; i++) {
            double s = ret + (x[i] * y[i] + r);
            r = (x[i] * y[i] + r) - (s - ret);
            ret = s;
        }
        return ret;
    }
    public static long dot(long[] x, long[] y) {
        int n = x.Length;
        long ret = 0;
        for (int i = 0; i < n; i++) ret = (ret + x[i] * y[i]) % Mod;
        return ret;
    }
    public static T[][] trans<T>(T[][] A) {
        int n = A[0].Length, m = A.Length;
        var ret = new T[n][];
        for (int i = 0; i < n; i++) { ret[i] = new T[m]; for (int j = 0; j < m; j++) ret[i][j] = A[j][i]; }
        return ret;
    }
    public static double[] mul(double[][] A, double[] x) {
        int n = A.Length;
        var ret = new double[n];
        for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]);
        return ret;
    }
    public static long[] mul(long[][] A, long[] x) {
        int n = A.Length;
        var ret = new long[n];
        for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]);
        return ret;
    }
    public static long[][] mul(long[][] A, long[][] B) {
        int n = A.Length;
        var Bt = trans(B);
        var ret = new long[n][];
        for (int i = 0; i < n; i++) ret[i] = mul(Bt, A[i]);
        return ret;
    }
    public static double[][] mul(double[][] A, double[][] B) {
        int n = A.Length;
        var Bt = trans(B);
        var ret = new double[n][];
        for (int i = 0; i < n; i++) ret[i] = mul(Bt, A[i]);
        return ret;
    }
    public static long[] add(long[] x, long[] y) {
        int n = x.Length;
        var ret = new long[n];
        for (int i = 0; i < n; i++) ret[i] = (x[i] + y[i]) % Mod;
        return ret;
    }
    public static long[][] add(long[][] A, long[][] B) {
        int n = A.Length;
        var ret = new long[n][];
        for (int i = 0; i < n; i++) ret[i] = add(A[i], B[i]);
        return ret;
    }
    public static long pow(long a, long b) {
        if (a >= Mod) return pow(a % Mod, b);
        if (a == 0) return 0;
        if (b == 0) return 1;
        var t = pow(a, b / 2);
        if ((b & 1) == 0) return t * t % Mod;
        return t * t % Mod * a % Mod;
    }
    public static long inv(long a) { return pow(a, Mod - 2); }
    public static long gcd(long a, long b) {
        while (b > 0) { var t = a % b; a = b; b = t; } return a;
    }
    // a x + b y = gcd(a, b)
    public static long extgcd(long a, long b, out long x, out long y) {
        long g = a; x = 1; y = 0;
        if (b > 0) { g = extgcd(b, a % b, out y, out x); y -= a / b * x; }
        return g;
    }
    public static long lcm(long a, long b) { return a / gcd(a, b) * b; }

    static long[] facts;
    public static long[] setfacts(int n) {
        facts = new long[n + 1];
        facts[0] = 1;
        for (int i = 0; i < n; i++) facts[i + 1] = facts[i] * (i + 1) % Mod;
        return facts;
    }
    public static long comb(int n, int r) {
        if (n < 0 || r < 0 || r > n) return 0;
        if (n - r < r) r = n - r;
        if (r == 0) return 1;
        if (r == 1) return n;
        if (facts != null && facts.Length > n) return facts[n] * inv(facts[r]) % Mod * inv(facts[n - r]) % Mod;
        int[] numer = new int[r], denom = new int[r];
        for (int k = 0; k < r; k++) { numer[k] = n - r + k + 1; denom[k] = k + 1; }
        for (int p = 2; p <= r; p++) {
            int piv = denom[p - 1];
            if (piv > 1) {
                int ofst = (n - r) % p;
                for (int k = p - 1; k < r; k += p) { numer[k - ofst] /= piv; denom[k] /= piv; }
            }
        }
        long ret = 1;
        for (int k = 0; k < r; k++) if (numer[k] > 1) ret = ret * numer[k] % Mod;
        return ret;
    }
    public static long[][] getcombs(int n) {
        var ret = new long[n + 1][];
        for (int i = 0; i <= n; i++) {
            ret[i] = new long[i + 1];
            ret[i][0] = ret[i][i] = 1;
            for (int j = 1; j < i; j++) ret[i][j] = (ret[i - 1][j - 1] + ret[i - 1][j]) % Mod;
        }
        return ret;
    }
    // nC0, nC2, ..., nCn
    public static long[] getcomb(int n) {
        var ret = new long[n + 1];
        ret[0] = 1;
        for (int i = 0; i < n; i++) ret[i + 1] = ret[i] * (n - i) % Mod * inv(i + 1) % Mod;
        return ret;
    }
}
0