結果
| 問題 |
No.577 Prime Powerful Numbers
|
| ユーザー |
anta
|
| 提出日時 | 2017-10-13 22:54:29 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 31 ms / 2,000 ms |
| コード長 | 3,936 bytes |
| コンパイル時間 | 1,691 ms |
| コンパイル使用メモリ | 178,100 KB |
| 実行使用メモリ | 8,932 KB |
| 最終ジャッジ日時 | 2024-11-17 18:03:48 |
| 合計ジャッジ時間 | 2,605 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 10 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))
#define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i))
#define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i))
static const int INF = 0x3f3f3f3f; static const long long INFL = 0x3f3f3f3f3f3f3f3fLL;
typedef vector<int> vi; typedef pair<int, int> pii; typedef vector<pair<int, int> > vpii; typedef long long ll;
template<typename T, typename U> static void amin(T &x, U y) { if (y < x) x = y; }
template<typename T, typename U> static void amax(T &x, U y) { if (x < y) x = y; }
vector<int> primes;
vector<int> smallestPrimeFactor;
void linearSieve(int n) {
if (n < 1) n = 1;
if ((int)smallestPrimeFactor.size() >= n + 1) return;
int primePiBound = n < 20 ? n - 1 : (int)(n / (log(n * 1.) - 2) + 2);
primes.assign(primePiBound + 1, numeric_limits<int>::max());
int P = 0;
smallestPrimeFactor.assign(n + 1, 0);
smallestPrimeFactor[1] = 1;
int n2 = n / 2, n3 = n / 3, n5 = n / 5;
if (n >= 2)
primes[P ++] = 2;
if (n >= 3)
primes[P ++] = 3;
for (int q = 2; q <= n; q += 2)
smallestPrimeFactor[q] = 2;
for (int q = 3; q <= n; q += 6)
smallestPrimeFactor[q] = 3;
for (int q = 5; q <= n5; q += 2) {
if (smallestPrimeFactor[q] == 0)
primes[P ++] = smallestPrimeFactor[q] = q;
int bound = smallestPrimeFactor[q];
for (int i = 2; ; ++ i) {
int p = primes[i];
if (p > bound) break;
int pq = p * q;
if (pq > n) break;
smallestPrimeFactor[pq] = p;
}
}
for (int q = (n5 + 1) | 1; q <= n; q += 2) {
if (smallestPrimeFactor[q] == 0)
primes[P ++] = smallestPrimeFactor[q] = q;
}
primes.resize(P);
}
inline long long mulmodll(long long a, long long b, long long m) {
long long quot = (long long)((long double)a * b / m + 0.5);
long long res = a * b - m * quot;
res = a * b - m * quot;
if (res < 0) res += m;
return res;
}
long long powmodll(long long a, unsigned long long k, const long long MOD) {
a %= MOD;
long long r = MOD == 1 ? 0 : 1;
while (k) {
if (k & 1)
r = mulmodll(r, a, MOD);
a = mulmodll(a, a, MOD);
k >>= 1;
}
return r;
}
bool suspect(ll a, int s, ll d, ll n) {
auto x = powmodll(a, d, n);
if (x == 1) return true;
for (int r = 0; r < s; ++r) {
if (x == n - 1) return true;
x = mulmodll(x, x, n);
}
return false;
}
bool isPrime(ll n) {
if (n <= 1 || (n > 2 && (n & 1) == 0)) return false;
if (n < (ll)smallestPrimeFactor.size())
return smallestPrimeFactor[(size_t)n] == n;
const int test[] = { 2,3,5,7,11,13,17,19,23,-1 };
auto d = n - 1;
int s = 0;
while (d % 2 == 0) ++s, d /= 2;
for (int i = 0; test[i] < n && test[i] != -1; ++i)
if (!suspect(test[i], s, d, n)) return false;
return true;
}
int sqrti(long long x) {
int s = (int)sqrt(x * 1.L);
long long sqs = (long long)s * s;
if (sqs > x) {
do -- s; while ((long long)s * s > x);
} else {
while (sqs <= x - (2 * s + 1)) {
sqs += 2 * s + 1;
++ s;
}
}
return s;
}
vector<ll> remainingPrimePowers;
bool isPrimePower(ll n) {
if (n <= 0) return false;
if ((n & (n - 1)) == 0) return true;
if (isPrime(n)) return true;
int sqrtn = sqrti(n);
if ((ll)sqrtn * sqrtn == n && isPrime(sqrtn)) return true;
if (remainingPrimePowers.empty()) {
linearSieve(1000000);
for (int p : primes) {
if (p > (int)1e6) break;
ll lim = (ll)1e18 / p;
for (ll q = (ll)p * p * p; ; q *= p) {
remainingPrimePowers.push_back(q);
if (q > lim) break;
}
}
sort(remainingPrimePowers.begin(), remainingPrimePowers.end());
}
return binary_search(remainingPrimePowers.begin(), remainingPrimePowers.end(), n);
}
int main() {
int T;
scanf("%d", &T);
for (int ii = 0; ii < T; ++ ii) {
long long N;
scanf("%lld", &N);
bool ans;
if (N <= 2) {
ans = false;
} else if (N % 2 == 0) {
ans = true;
} else {
ans = false;
for (ll x = 2; x < N - 1; x *= 2) {
ans |= isPrimePower(N - x);
}
}
puts(ans ? "Yes" : "No");
}
return 0;
}
anta