結果
問題 | No.577 Prime Powerful Numbers |
ユーザー | りあん |
提出日時 | 2017-10-13 23:24:06 |
言語 | C#(csc) (csc 3.9.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 14,304 bytes |
コンパイル時間 | 1,315 ms |
コンパイル使用メモリ | 115,584 KB |
実行使用メモリ | 21,840 KB |
最終ジャッジ日時 | 2024-11-17 18:13:04 |
合計ジャッジ時間 | 5,738 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 28 ms
18,048 KB |
testcase_01 | AC | 71 ms
18,176 KB |
testcase_02 | AC | 26 ms
17,792 KB |
testcase_03 | WA | - |
testcase_04 | AC | 34 ms
18,004 KB |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | AC | 25 ms
17,784 KB |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System; using System.Collections.Generic; using System.Linq; using System.Linq.Expressions; using System.IO; using System.Text; using System.Diagnostics; using static util; using P = pair<int, int>; using Binary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.BinaryExpression>; using Unary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.UnaryExpression>; class Program { static StreamWriter sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; static Scan sc = new Scan(); const int M = 1000000007; const double eps = 1e-11; static readonly int[] dd = { 0, 1, 0, -1, 0 }; static void Main() { int q = sc.Int; var prs = mymath.getprimes(40000); for (int i = 0; i < q; i++) { var n = sc.Long; if (n < 4) { Prt("No"); continue; } if (n % 2 == 0) { Prt("Yes"); continue; } long p2 = 1; while (p2 * 2 < n) { p2 *= 2; long m = n - p2; if (m <= 1) break; if (isprime(m)) { goto A; } long d = Math.Max((long)Math.Pow(m, 1.0 / 2) - 3, 3); for (long j = d; j * j <= m; j++) { if (isprime(j) && j * j == m) { goto A; } } d = Math.Max((long)Math.Pow(m, 1.0 / 3) - 3, 3); for (long j = d; (double)j * j * j - 1 <= m; j++) { if (isprime(j) && j * j * j == m) { goto A; } } foreach (var item in prs) { if ((double)item * item * item * item - 1 > m) break; long t = m; while (t % item == 0) { t /= item; } if (t == 1) { goto A; } } } Prt("No"); continue; A: Prt("Yes"); } sw.Flush(); } static bool suspect(long a, int s, long d, long n) { mymath.Mod = n; long x = mymath.pow(a, d); if (x == 1) return true; for (int r = 0; r < s; ++r) { if (x == n - 1) return true; x = x * x % n; } return false; } // {2,7,61,-1} is for n < 4759123141 (= 2^32) // {2,3,5,7,11,13,17,19,23,-1} is for n < 10^16 (at least) static bool isprime(long n) { if (n <= 1 || (n > 2 && n % 2 == 0)) return false; var test = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, -1 }; long d = n - 1; int s = 0; while (d % 2 == 0) { ++s; d /= 2; } for (int i = 0; test[i] < n && test[i] != -1; ++i) if (!suspect(test[i], s, d, n)) return false; return true; } static void DBG(string a) { Console.WriteLine(a); } static void DBG<T>(IEnumerable<T> a) { DBG(string.Join(" ", a)); } static void DBG(params object[] a) { DBG(string.Join(" ", a)); } static void Prt(string a) { sw.WriteLine(a); } static void Prt<T>(IEnumerable<T> a) { Prt(string.Join(" ", a)); } static void Prt(params object[] a) { Prt(string.Join(" ", a)); } // for AOJ // static string Join<T>(string sep, IEnumerable<T> a) { return string.Join(sep, a.Select(x => x.ToString()).ToArray()); } // static void DBG<T>(IEnumerable<T> a) { DBG(Join(" ", a)); } // static void DBG(params object[] a) { DBG(Join(" ", a)); } // static void Prt<T>(IEnumerable<T> a) { Prt(Join(" ", a)); } // static void Prt(params object[] a) { Prt(Join(" ", a)); } } class pair<T, U> : IComparable<pair<T, U>> where T : IComparable<T> where U : IComparable<U> { public T v1; public U v2; public pair(T v1, U v2) { this.v1 = v1; this.v2 = v2; } public int CompareTo(pair<T, U> a) { return v1.CompareTo(a.v1) != 0 ? v1.CompareTo(a.v1) : v2.CompareTo(a.v2); } public override string ToString() { return v1 + " " + v2; } } static class util { public static pair<T, U> make_pair<T, U>(T v1, U v2) where T : IComparable<T> where U : IComparable<U> { return new pair<T, U>(v1, v2); } public static T Max<T>(params T[] a) { return a.Max(); } public static T Min<T>(params T[] a) { return a.Min(); } public static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; } public static void swap<T>(this IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; } public static T[] copy<T>(this IList<T> a) { var ret = new T[a.Count]; for (int i = 0; i < a.Count; i++) ret[i] = a[i]; return ret; } } static class Operator<T> { static readonly ParameterExpression x = Expression.Parameter(typeof(T), "x"); static readonly ParameterExpression y = Expression.Parameter(typeof(T), "y"); public static readonly Func<T, T, T> Add = Lambda(Expression.Add); public static readonly Func<T, T, T> Subtract = Lambda(Expression.Subtract); public static readonly Func<T, T, T> Multiply = Lambda(Expression.Multiply); public static readonly Func<T, T, T> Divide = Lambda(Expression.Divide); public static readonly Func<T, T> Plus = Lambda(Expression.UnaryPlus); public static readonly Func<T, T> Negate = Lambda(Expression.Negate); public static Func<T, T, T> Lambda(Binary op) { return Expression.Lambda<Func<T, T, T>>(op(x, y), x, y).Compile(); } public static Func<T, T> Lambda(Unary op) { return Expression.Lambda<Func<T, T>>(op(x), x).Compile(); } } class Scan { public int Int { get { return int.Parse(Str); } } public long Long { get { return long.Parse(Str); } } public double Double { get { return double.Parse(Str); } } public string Str { get { return Console.ReadLine().Trim(); } } public int[] IntArr { get { return StrArr.Select(int.Parse).ToArray(); } } public long[] LongArr { get { return StrArr.Select(long.Parse).ToArray(); } } public double[] DoubleArr { get { return StrArr.Select(double.Parse).ToArray(); } } public string[] StrArr { get { return Str.Split(); } } bool eq<T, U>() { return typeof(T).Equals(typeof(U)); } T ct<T, U>(U a) { return (T)Convert.ChangeType(a, typeof(T)); } T cv<T>(string s) { return eq<T, int>() ? ct<T, int>(int.Parse(s)) : eq<T, long>() ? ct<T, long>(long.Parse(s)) : eq<T, double>() ? ct<T, double>(double.Parse(s)) : eq<T, char>() ? ct<T, char>(s[0]) : ct<T, string>(s); } public void Multi<T>(out T a) { a = cv<T>(Str); } public void Multi<T, U>(out T a, out U b) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); } public void Multi<T, U, V>(out T a, out U b, out V c) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); } public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); } public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); } public void Multi<T, U, V, W, X, Y>(out T a, out U b, out V c, out W d, out X e, out Y f) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); f = cv<Y>(ar[5]); } public void Multi<T, U, V, W, X, Y, Z>(out T a, out U b, out V c, out W d, out X e, out Y f, out Z g) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); f = cv<Y>(ar[5]); g = cv<Z>(ar[6]);} } static class mymath { public static long Mod = 1000000007; public static bool isprime(long a) { if (a < 2) return false; for (long i = 2; i * i <= a; i++) if (a % i == 0) return false; return true; } public static bool[] sieve(int n) { var p = new bool[n + 1]; for (int i = 2; i <= n; i++) p[i] = true; for (int i = 2; i * i <= n; i++) if (p[i]) for (int j = i * i; j <= n; j += i) p[j] = false; return p; } public static List<int> getprimes(int n) { var prs = new List<int>(); var p = sieve(n); for (int i = 2; i <= n; i++) if (p[i]) prs.Add(i); return prs; } public static long[][] E(int n) { var ret = new long[n][]; for (int i = 0; i < n; i++) { ret[i] = new long[n]; ret[i][i] = 1; } return ret; } public static double[][] dE(int n) { var ret = new double[n][]; for (int i = 0; i < n; i++) { ret[i] = new double[n]; ret[i][i] = 1; } return ret; } public static long[][] pow(long[][] A, long n) { if (n == 0) return E(A.Length); var t = pow(A, n / 2); if ((n & 1) == 0) return mul(t, t); return mul(mul(t, t), A); } public static double[][] pow(double[][] A, long n) { if (n == 0) return dE(A.Length); var t = pow(A, n / 2); if ((n & 1) == 0) return mul(t, t); return mul(mul(t, t), A); } public static double dot(double[] x, double[] y) { int n = x.Length; double ret = 0; for (int i = 0; i < n; i++) ret += x[i] * y[i]; return ret; } public static double _dot(double[] x, double[] y) { int n = x.Length; double ret = 0, r = 0; for (int i = 0; i < n; i++) { double s = ret + (x[i] * y[i] + r); r = (x[i] * y[i] + r) - (s - ret); ret = s; } return ret; } public static long dot(long[] x, long[] y) { int n = x.Length; long ret = 0; for (int i = 0; i < n; i++) ret = (ret + x[i] * y[i]) % Mod; return ret; } public static T[][] trans<T>(T[][] A) { int n = A[0].Length, m = A.Length; var ret = new T[n][]; for (int i = 0; i < n; i++) { ret[i] = new T[m]; for (int j = 0; j < m; j++) ret[i][j] = A[j][i]; } return ret; } public static double[] mul(double[][] A, double[] x) { int n = A.Length; var ret = new double[n]; for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]); return ret; } public static long[] mul(long[][] A, long[] x) { int n = A.Length; var ret = new long[n]; for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]); return ret; } public static long[][] mul(long[][] A, long[][] B) { int n = A.Length; var Bt = trans(B); var ret = new long[n][]; for (int i = 0; i < n; i++) ret[i] = mul(Bt, A[i]); return ret; } public static double[][] mul(double[][] A, double[][] B) { int n = A.Length; var Bt = trans(B); var ret = new double[n][]; for (int i = 0; i < n; i++) ret[i] = mul(Bt, A[i]); return ret; } public static long[] add(long[] x, long[] y) { int n = x.Length; var ret = new long[n]; for (int i = 0; i < n; i++) ret[i] = (x[i] + y[i]) % Mod; return ret; } public static long[][] add(long[][] A, long[][] B) { int n = A.Length; var ret = new long[n][]; for (int i = 0; i < n; i++) ret[i] = add(A[i], B[i]); return ret; } public static long pow(long a, long b) { if (a >= Mod) return pow(a % Mod, b); if (a == 0) return 0; if (b == 0) return 1; var t = pow(a, b / 2); if ((b & 1) == 0) return t * t % Mod; return t * t % Mod * a % Mod; } public static long inv(long a) { return pow(a, Mod - 2); } public static long gcd(long a, long b) { while (b > 0) { var t = a % b; a = b; b = t; } return a; } // a x + b y = gcd(a, b) public static long extgcd(long a, long b, out long x, out long y) { long g = a; x = 1; y = 0; if (b > 0) { g = extgcd(b, a % b, out y, out x); y -= a / b * x; } return g; } public static long lcm(long a, long b) { return a / gcd(a, b) * b; } static long[] facts; public static long[] setfacts(int n) { facts = new long[n + 1]; facts[0] = 1; for (int i = 0; i < n; i++) facts[i + 1] = facts[i] * (i + 1) % Mod; return facts; } public static long comb(int n, int r) { if (n < 0 || r < 0 || r > n) return 0; if (n - r < r) r = n - r; if (r == 0) return 1; if (r == 1) return n; if (facts != null && facts.Length > n) return facts[n] * inv(facts[r]) % Mod * inv(facts[n - r]) % Mod; int[] numer = new int[r], denom = new int[r]; for (int k = 0; k < r; k++) { numer[k] = n - r + k + 1; denom[k] = k + 1; } for (int p = 2; p <= r; p++) { int piv = denom[p - 1]; if (piv > 1) { int ofst = (n - r) % p; for (int k = p - 1; k < r; k += p) { numer[k - ofst] /= piv; denom[k] /= piv; } } } long ret = 1; for (int k = 0; k < r; k++) if (numer[k] > 1) ret = ret * numer[k] % Mod; return ret; } public static long[][] getcombs(int n) { var ret = new long[n + 1][]; for (int i = 0; i <= n; i++) { ret[i] = new long[i + 1]; ret[i][0] = ret[i][i] = 1; for (int j = 1; j < i; j++) ret[i][j] = (ret[i - 1][j - 1] + ret[i - 1][j]) % Mod; } return ret; } // nC0, nC2, ..., nCn public static long[] getcomb(int n) { var ret = new long[n + 1]; ret[0] = 1; for (int i = 0; i < n; i++) ret[i + 1] = ret[i] * (n - i) % Mod * inv(i + 1) % Mod; return ret; } }