結果
問題 | No.577 Prime Powerful Numbers |
ユーザー | Kmcode1 |
提出日時 | 2017-10-14 00:28:35 |
言語 | C++11 (gcc 11.4.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,649 bytes |
コンパイル時間 | 1,495 ms |
コンパイル使用メモリ | 180,016 KB |
実行使用メモリ | 49,568 KB |
最終ジャッジ日時 | 2024-11-17 18:26:56 |
合計ジャッジ時間 | 23,738 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | TLE | - |
testcase_02 | AC | 69 ms
27,152 KB |
testcase_03 | TLE | - |
testcase_04 | AC | 102 ms
27,280 KB |
testcase_05 | TLE | - |
testcase_06 | TLE | - |
testcase_07 | TLE | - |
testcase_08 | TLE | - |
testcase_09 | TLE | - |
testcase_10 | AC | 70 ms
49,568 KB |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:244:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 244 | scanf("%lld", &n); | ~~~~~^~~~~~~~~~~~
ソースコード
#include "bits/stdc++.h" using namespace std; struct Rho { mt19937 mt; //Miller miller; long long c; Rho() { mt.seed(clock()); } inline long long f(long long x, long long n) { return (x * x + c) % n; } long long check(long long n) { if (n == 4) { return 2; } c = mt() % n; long long x = mt() % n; long long y = x; long long d = 1; while (d == 1) { x = f(x, n); y = f(f(y, n), n); d = __gcd(abs(x - y), n); } if (d == n) { return -1; } return d; } /*vector<long long> factor(long long n) { if (n <= 1) { return {}; } if (miller.check(n)) { return { n }; } long long res = -1; while (res == -1) { res = check(n); } vector<long long> fa = factor(res); vector<long long> fb = factor(n / res); fa.insert(fa.end(), fb.begin(), fb.end()); return fa; }*/ }; int q; Rho rrr; bool ok(long long int val, int j) { long long int r = 1; while (j--) { r *= val; if (r > val) { return false; } } if (r > val) { return false; } return true; } long long int sq(long long int w, int j) { if (j == 1) { return w; } if (j == 2) { return sqrt(w); } return -1; } long long int pp(long long int w, int j) { long long int r = 1; while (j--) { r *= w; } return r; } vector<int> primes; vector<int> smallestPrimeFactor; void linearSieve(int n) { if (n < 1) n = 1; if ((int)smallestPrimeFactor.size() >= n + 1) return; int primePiBound = n < 20 ? n - 1 : (int)(n / (log(n * 1.) - 2) + 2); primes.assign(primePiBound + 1, numeric_limits<int>::max()); int P = 0; smallestPrimeFactor.assign(n + 1, 0); smallestPrimeFactor[1] = 1; int n2 = n / 2, n3 = n / 3, n5 = n / 5; if (n >= 2) primes[P++] = 2; if (n >= 3) primes[P++] = 3; for (int q = 2; q <= n; q += 2) smallestPrimeFactor[q] = 2; for (int q = 3; q <= n; q += 6) smallestPrimeFactor[q] = 3; for (int q = 5; q <= n5; q += 2) { if (smallestPrimeFactor[q] == 0) primes[P++] = smallestPrimeFactor[q] = q; int bound = smallestPrimeFactor[q]; for (int i = 2; ; ++i) { int p = primes[i]; if (p > bound) break; int pq = p * q; if (pq > n) break; smallestPrimeFactor[pq] = p; } } for (int q = (n5 + 1) | 1; q <= n; q += 2) { if (smallestPrimeFactor[q] == 0) primes[P++] = smallestPrimeFactor[q] = q; } primes.resize(P); } typedef int FactorsInt; typedef vector<pair<FactorsInt, int> > Factors; void primeFactors(FactorsInt x, Factors &out_v) { linearSieve(x); out_v.clear(); while (x != 1) { int p = smallestPrimeFactor[x], k = 0; x /= p, k++; while (x % p == 0) x /= p, k++; out_v.push_back(make_pair(p, k)); } } void divisors(int num, vector<FactorsInt> &v) { Factors pf; primeFactors(num, pf); queue<pair<int, int> > stk; stk.push(make_pair(1, 0)); while (!stk.empty()) { pair<int, int> f = stk.front(); stk.pop(); if (f.second == pf.size()) { continue; } int cur = f.first; stk.push(make_pair(f.first, f.second + 1)); for (int i = 1; i <= pf[f.second].second; i++) { cur *= pf[f.second].first; v.push_back(cur); stk.push(make_pair(cur, f.second + 1)); } } v.push_back(1); } unordered_set<long long int> s; bool pr[1000002]; bool isprime(long long int val) { for (int i = 0; i < primes.size() && primes[i] * primes[i] <= val; i++) { if (val%primes[i] == 0) { return false; } } return true; } long long int mult_mod(long long int A, long long int B, long long int MOD) { if (B == 0LL) { return 0; } long long int u = mult_mod(A, B >> 1LL, MOD); u <<= 1LL; if (u >= MOD)u %= MOD; if (B & 1LL)u += A; if (u >= MOD)u %= MOD; return u; } struct Miller { const vector<long long> v = { 2 , 7 , 61 }; // < 4,759,123,141 // x^k (mod m) long long modpow(long long x, long long k, long long m) { long long res = 1; while (k) { if (k & 1) { res = mult_mod(res, x, m); } k /= 2; x = mult_mod(x, x, m); } return res; } // check if n is prime bool check(long long n) { if (n < 2) { return false; } long long d = n - 1; long long s = 0; while (d % 2 == 0) { d /= 2; s++; } for (long long a : v) { if (a == n) { return true; } if (modpow(a, d, n) != 1) { bool ok = true; for (long long r = 0; r < s; r++) { if (modpow(a, d * (1LL << r), n) == n - 1) { ok = false; break; } } if (ok) { return false; } } } return true; } }; Miller miller; int main() { linearSieve(1000002); for (int i = 0; i < primes.size(); i++) { pr[primes[i]] = true; long long int val = 1; while (val <= 1000000000000000000LL) { s.insert(val); long long int pp2 = val; val *= primes[i]; if (val / primes[i] != pp2) { break; } } } s.erase(1); cin >> q; while (q--) { long long int n; scanf("%lld", &n); if (n <= 2) { puts("No"); continue; } if (n % 2 == 0LL) { puts("Yes"); continue; } long long int r = 2; bool ok = false; while (r <= n&&r >= 0) { long long int rest = n - r; if (rest <= 1) { break; } if (s.count(rest)) { ok = true; break; } for (int j = 2; j >= 1; j--) { long long int k = sq(rest, j); if (k <= 1)continue; if (pp(k, j) == rest) { j = 0; if (k <= 1000000 && pr[k]) { ok = true; break; } else { if (k <= 1000000 && pr[k] == false) { continue; } } if (isprime(k) == false) { continue; } if (rrr.check(k)==-1) { ok = true; break; } //return 1; } } if (ok) { break; } r *= 2LL; } if (ok) { puts("Yes"); } else { puts("No"); } } return 0; }