結果

問題 No.577 Prime Powerful Numbers
ユーザー はまやんはまやん
提出日時 2017-10-15 03:01:10
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 195 ms / 2,000 ms
コード長 4,866 bytes
コンパイル時間 1,698 ms
コンパイル使用メモリ 171,368 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-17 18:48:53
合計ジャッジ時間 2,803 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 10
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#pragma GCC optimize ("-O3")
using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); }
//---------------------------------------------------------------------------------------------------
#ifdef _MSC_VER
#pragma push_macro("long")
#undef long
#ifdef _WIN32
inline unsigned int __builtin_ctz(unsigned int x) { unsigned long r; _BitScanForward(&r, x); return r; }
inline unsigned int __builtin_clz(unsigned int x) { unsigned long r; _BitScanReverse(&r, x); return 31 - r; }
inline unsigned int __builtin_ffs(unsigned int x) { unsigned long r; return _BitScanForward(&r, x) ? r + 1 : 0; }
inline unsigned int __builtin_popcount(unsigned int x) { return __popcnt(x); }
inline unsigned int hidword(unsigned long long x) { return static_cast<unsigned int>(x >> 32); }
inline unsigned int lodword(unsigned long long x) { return static_cast<unsigned int>(x & 0xFFFFFFFF); }
inline unsigned long long __builtin_ctzll(unsigned long long x) { return lodword(x) ? __builtin_ctz(lodword(x)) : __builtin_ctz(hidword(x)) + 32; }
inline unsigned long long __builtin_clzll(unsigned long long x) { return hidword(x) ? __builtin_clz(hidword(x)) : __builtin_clz(lodword(x)) + 32; }
inline unsigned long long __builtin_ffsll(unsigned long long x) { return lodword(x) ? __builtin_ffs(lodword(x)) : hidword(x) ? __builtin_ffs(hidword
    (x)) + 32 : 0; }
inline unsigned long long __builtin_popcountll(unsigned long long x) { return __builtin_popcount(lodword(x)) + __builtin_popcount(hidword(x)); }
#endif // _WIN32
#pragma pop_macro("long")
#endif // _MSC_VER
typedef long long ll;
typedef __int128 int128_t;
//typedef ll int128_t;
int128_t powmod(int128_t x, int128_t y, int128_t p) { // O(log y)
assert(0 <= x and x < p);
assert(0 <= y);
int128_t z = 1;
for (int128_t i = 1; i <= y; i <<= 1) {
if (y & i) z = z * x % p;
x = x * x % p;
}
return z;
}
int K = 10;
int getrand(int l, int r) { // [l, r]
static uint32_t y = time(NULL);
y ^= (y << 13); y ^= (y >> 17);
y ^= (y << 5);
return y % (r - l + 1) + l;
}
ll getrandll(ll l, ll r) { // [l,r]
ll a = getrand(0, 999999999);
ll b = getrand(0, 999999999);
ll x = a * 1000000000LL + b;
assert(0 <= x);
return x % (r - l + 1) + l;
}
bool isprime(ll v, int loop = 50) {
ll d = v - 1;
int s = 0, i, j;
if (v <= 1) return false;
if (v == 2) return true;
if (v % 2 == 0) return false;
while (d % 2 == 0) d /= 2, s++;
rep(i, 0, loop) {
ll a = getrandll(1, v - 1);
ll r = powmod(a, d, v);
if (r == 1 || r == v - 1) continue;
int j;
for (j = 0; j < s; j++) {
r = powmod(r, 2, v);
if (r == v - 1) break;
}
if (j == s) return false;
}
return true;
}
/*---------------------------------------------------------------------------------------------------
           _
     _ ´<_   Welcome to My Coding Space!
     ´_` /  ⌒i
           | |
    /   //  |
  __(__ニ/  _/ .| .|____
     /____/ u 
---------------------------------------------------------------------------------------------------*/
typedef long long ll; typedef long double ld;
#define INF 1LL<<60
ld lginf = -1;
inline ll mul(ll a, ll b) {
if (a == 0 or b == 0) return 0;
if (a*b < a or a*b < b) return INF;
return a*b;
}
inline ll fastpow(ll x, ll n) {
ll ret = 1;
while (0 < n) {
if ((n % 2) == 0) x = mul(x,x), n >>= 1;
else ret = mul(ret,x), --n;
}
return ret;
}
ll N;
#define INF 1LL<<60
#define yes "Yes"
#define no "No"
//---------------------------------------------------------------------------------------------------
int isprimePow(ll n) {
int k = 1;
int up = n;
if (isprime(n)) return 1;
for (ll q = 2; q < n; q *= 2) {
ll ok = k == 1 ? n : expl(logl(n + 1) / k) + 1e-6;
if (fastpow(ok, k) == n and isprime(ok)) return 1;
k++;
up = ok;
}
return 0;
}
//---------------------------------------------------------------------------------------------------
string solve() {
cin >> N;
if (N <= 2) return no;
if (N % 2 == 0) {
if (4 <= N) return yes;
else return no;
}
for (ll q = 2; q < N; q *= 2) if (isprimePow(N - q)) return yes;
return no;
}
//---------------------------------------------------------------------------------------------------
void _main() {
int Q; cin >> Q;
rep(q, 0, Q) printf("%s\n", solve().c_str());
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0