結果

問題 No.3030 ミラー・ラビン素数判定法のテスト
ユーザー maimai
提出日時 2017-10-22 01:26:58
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 6,024 bytes
コンパイル時間 3,164 ms
コンパイル使用メモリ 217,248 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-04-29 12:37:01
合計ジャッジ時間 4,413 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 55 ms
5,248 KB
testcase_01 AC 55 ms
5,376 KB
testcase_02 AC 55 ms
5,376 KB
testcase_03 AC 56 ms
5,376 KB
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize ("O3")
#pragma GCC target ("avx")
#include "bits/stdc++.h" // define macro "/D__MAI"

using namespace std;
typedef long long int ll;

#define xprintf(fmt,...) fprintf(stderr,fmt,__VA_ARGS__)
#define debugv(v) {printf("L%d %s > ",__LINE__,#v);for(auto e:v){cout<<e<<" ";}cout<<endl;}
#define debuga(m,w) {printf("L%d %s > ",__LINE__,#m);for(int x=0;x<(w);x++){cout<<(m)[x]<<" ";}cout<<endl;}
#define debugaa(m,h,w) {printf("L%d %s >\n",__LINE__,#m);for(int y=0;y<(h);y++){for(int x=0;x<(w);x++){cout<<(m)[y][x]<<" ";}cout<<endl;}}
#define ALL(v) (v).begin(),(v).end()
#define repeat(cnt,l) for(auto cnt=0ll;(cnt)<(l);++(cnt))
#define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt))
#define MD 1000000007ll
#define PI 3.1415926535897932384626433832795
#define EPS 1e-12
template<typename T1, typename T2> ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << "(" << p.first << ":" << p.second << ")"; return o; }
template<typename iterator> inline size_t argmin(iterator begin, iterator end) { return distance(begin, min_element(begin, end));}
template<typename iterator> inline size_t argmax(iterator begin, iterator end) { return distance(begin, max_element(begin, end));}
template<typename T> T& maxset(T& to, const T& val) { return to = max(to, val); }
template<typename T> T& minset(T& to, const T& val) { return to = min(to, val); }

mt19937_64 randdev(8901016);
inline ll rand_range(ll l, ll h) {
    return uniform_int_distribution<ll>(l, h)(randdev);
}

#ifdef __MAI
#define getchar_unlocked getchar
#define putchar_unlocked putchar
#endif
#ifdef __VSCC
#define getchar_unlocked _getchar_nolock
#define putchar_unlocked _putchar_nolock
#endif
namespace {
#define isvisiblechar(c) (0x21<=(c)&&(c)<=0x7E)
    class MaiScanner {
    public:
        template<typename T> void input_integer(T& var) {
            var = 0;
            T sign = 1;
            int cc = getchar_unlocked();
            for (; cc<'0' || '9'<cc; cc = getchar_unlocked())
                if (cc == '-') sign = -1;
            for (; '0' <= cc&&cc <= '9'; cc = getchar_unlocked())
                var = (var << 3) + (var << 1) + cc - '0';
            var = var*sign;
        }
        inline int c() { return getchar_unlocked(); }
        inline MaiScanner& operator>>(int& var) {
            input_integer<int>(var);
            return *this;
        }
        inline MaiScanner& operator>>(long long& var) {
            input_integer<long long>(var);
            return *this;
        }
        inline MaiScanner& operator>>(string& var) {
            int cc = getchar_unlocked();
            for (; !isvisiblechar(cc); cc = getchar_unlocked());
            for (; isvisiblechar(cc); cc = getchar_unlocked())
                var.push_back(cc);
            return *this;
        }
        template<typename IT> void in(IT begin, IT end) {
            for (auto it = begin; it != end; ++it) *this >> *it;
        }
    };
    class MaiPrinter {
        int stack_p;
        char stack[32];
    public:
        template<typename T>
        void output_integer(T var) {
            if (var == 0) {
                putchar_unlocked('0');
                return;
            }
            if (var < 0) {
                putchar_unlocked('-');
                var = -var;
            }
            stack_p = 0;
            while (var) {
                stack[stack_p++] = '0' + (var % 10);
                var /= 10;
            }
            while (stack_p)
                putchar_unlocked(stack[--stack_p]);
        }
        MaiPrinter& operator<<(char c) {
            putchar_unlocked(c);
            return *this;
        }
        MaiPrinter& operator<<(int var) {
            output_integer<int>(var);
            return *this;
        }
        MaiPrinter& operator<<(long long var) {
            output_integer<long long>(var);
            return *this;
        }
        MaiPrinter& operator<(int var) {
            output_integer<int>(var);
            putchar_unlocked(' ');
            return *this;
        }
        MaiPrinter& operator<(long long var) {
            output_integer<long long>(var);
            putchar_unlocked(' ');
            return *this;
        }
        MaiPrinter& operator<<(const string& str) {
            const char* p = str.c_str();
            const char* l = p + str.size();
            while (p < l) putchar_unlocked(*p++);
            return *this;
        }
    };
}
MaiScanner scanner;
MaiPrinter printer;



template<typename T>
T powm(T x, T p, T mod=1000000007ll){
    T y=1;
    x=x%mod;
    while (0<p){
        if (p%2==1){
            y=(y*x)%mod;
        }
        x=(x*x)%mod;
        p/=2;
    }
    return y;
}

// Miller–Rabin primality test
// https://qiita.com/gushwell/items/ff9ed83ba55350aaa369
bool isprime_mr(ll val) {
    typedef __int128_t ll128;
    static ll test[12] = {2,3,5,7,11,13,17,19,23,29,31,37};
    if (val <= 1 || val % 2 == 0)
        return val == 2;
    for (auto t : test)
        if (val % t == 0)
            return val == t;
    if (val < test[11]*test[11])
        return true;
    ll d = val - 1, s = 0;
    while (!(d & 1)) { ++s; d >>= 1; } // d*2**s
    for (auto t : test) {
        ll z = powm(t, d, val);
        if (z == 1)
            continue;
        for (ll r = 0; r < s; ++r) {
            if (z == val - 1)
                goto l_isprime_mr_ct;
            z = (ll)((ll128)(z) * z % val);
        }
        return false;
    l_isprime_mr_ct:;
    }
    return true;
}

bool isprime(ll val) {
    if (val <= 1 || val % 2 == 0)
        return val == 2;
    for (ll d = 3; d*d <= val; d += 2)
        if (val % d == 0)
            return false;
    return true;
}

ll m, n, kei;


int main() {
    scanner >> n;
    repeat(i, n) {
        ll a;
        scanner >> a;
        printer << a << ' ' << isprime_mr(a) << '\n';
    }
    iterate(v, 100, 100000) {
        if (isprime(v) != isprime_mr(v))
            cerr << v << ' ' << isprime(v) << isprime_mr(v) << endl,
            abort();
    }
    return 0;
}
0