結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
|
| 提出日時 | 2017-10-22 01:43:14 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 422 ms / 9,973 ms |
| コード長 | 6,189 bytes |
| コンパイル時間 | 3,064 ms |
| コンパイル使用メモリ | 216,480 KB |
| 最終ジャッジ日時 | 2025-01-05 03:24:32 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 |
ソースコード
#pragma GCC optimize ("O3")
#pragma GCC target ("avx")
#include "bits/stdc++.h" // define macro "/D__MAI"
using namespace std;
typedef long long int ll;
#define xprintf(fmt,...) fprintf(stderr,fmt,__VA_ARGS__)
#define debugv(v) {printf("L%d %s > ",__LINE__,#v);for(auto e:v){cout<<e<<" ";}cout<<endl;}
#define debuga(m,w) {printf("L%d %s > ",__LINE__,#m);for(int x=0;x<(w);x++){cout<<(m)[x]<<" ";}cout<<endl;}
#define debugaa(m,h,w) {printf("L%d %s >\n",__LINE__,#m);for(int y=0;y<(h);y++){for(int x=0;x<(w);x++){cout<<(m)[y][x]<<" ";}cout<<endl;}}
#define ALL(v) (v).begin(),(v).end()
#define repeat(cnt,l) for(auto cnt=0ll;(cnt)<(l);++(cnt))
#define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt))
#define MD 1000000007ll
#define PI 3.1415926535897932384626433832795
#define EPS 1e-12
template<typename T1, typename T2> ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << "(" << p.first << ":" << p.second << ")"; return o; }
template<typename iterator> inline size_t argmin(iterator begin, iterator end) { return distance(begin, min_element(begin, end));}
template<typename iterator> inline size_t argmax(iterator begin, iterator end) { return distance(begin, max_element(begin, end));}
template<typename T> T& maxset(T& to, const T& val) { return to = max(to, val); }
template<typename T> T& minset(T& to, const T& val) { return to = min(to, val); }
mt19937_64 randdev(8901016);
inline ll rand_range(ll l, ll h) {
return uniform_int_distribution<ll>(l, h)(randdev);
}
#ifdef __MAI
#define getchar_unlocked getchar
#define putchar_unlocked putchar
#endif
#ifdef __VSCC
#define getchar_unlocked _getchar_nolock
#define putchar_unlocked _putchar_nolock
#endif
namespace {
#define isvisiblechar(c) (0x21<=(c)&&(c)<=0x7E)
class MaiScanner {
public:
template<typename T> void input_integer(T& var) {
var = 0;
T sign = 1;
int cc = getchar_unlocked();
for (; cc<'0' || '9'<cc; cc = getchar_unlocked())
if (cc == '-') sign = -1;
for (; '0' <= cc&&cc <= '9'; cc = getchar_unlocked())
var = (var << 3) + (var << 1) + cc - '0';
var = var*sign;
}
inline int c() { return getchar_unlocked(); }
inline MaiScanner& operator>>(int& var) {
input_integer<int>(var);
return *this;
}
inline MaiScanner& operator>>(long long& var) {
input_integer<long long>(var);
return *this;
}
inline MaiScanner& operator>>(string& var) {
int cc = getchar_unlocked();
for (; !isvisiblechar(cc); cc = getchar_unlocked());
for (; isvisiblechar(cc); cc = getchar_unlocked())
var.push_back(cc);
return *this;
}
template<typename IT> void in(IT begin, IT end) {
for (auto it = begin; it != end; ++it) *this >> *it;
}
};
class MaiPrinter {
int stack_p;
char stack[32];
public:
template<typename T>
void output_integer(T var) {
if (var == 0) {
putchar_unlocked('0');
return;
}
if (var < 0) {
putchar_unlocked('-');
var = -var;
}
stack_p = 0;
while (var) {
stack[stack_p++] = '0' + (var % 10);
var /= 10;
}
while (stack_p)
putchar_unlocked(stack[--stack_p]);
}
MaiPrinter& operator<<(char c) {
putchar_unlocked(c);
return *this;
}
MaiPrinter& operator<<(int var) {
output_integer<int>(var);
return *this;
}
MaiPrinter& operator<<(long long var) {
output_integer<long long>(var);
return *this;
}
MaiPrinter& operator<(int var) {
output_integer<int>(var);
putchar_unlocked(' ');
return *this;
}
MaiPrinter& operator<(long long var) {
output_integer<long long>(var);
putchar_unlocked(' ');
return *this;
}
MaiPrinter& operator<<(const string& str) {
const char* p = str.c_str();
const char* l = p + str.size();
while (p < l) putchar_unlocked(*p++);
return *this;
}
};
}
MaiScanner scanner;
MaiPrinter printer;
ll powm_strict(ll x, ll p, ll mod=1000000007ll){
typedef __int128_t ll128;
ll y = 1;
x = x%mod;
while (0 < p) {
if (p%2 == 1)
y = (ll)((((ll128)y)*x)%mod);
x = (ll)((((ll128)x)*x)%mod);
p /= 2;
}
return y;
}
// Miller–Rabin primality test
// 参考:
// https://qiita.com/gushwell/items/ff9ed83ba55350aaa369
// https://yukicoder.me/submissions/210680
bool isprime_mr(ll val) {
typedef __int128_t ll128;
static ll test[12] = {2,3,5,7,11,13,17,19,23,29,31,37};
if (val <= 1 || val % 2 == 0)
return val == 2;
for (auto t : test)
if (val % t == 0)
return val == t;
if (val < test[11]*test[11])
return true;
ll d = val - 1, s = 0;
while (!(d & 1)) { ++s; d >>= 1; } // d*2**s
for (auto t : test) {
ll z = powm_strict(t, d, val);
if (z == 1 || z == val - 1)
continue;
for (ll r = 1; r < s; ++r) {
z = (ll)((ll128)(z) * z % val);
if (z == val - 1)
goto l_isprime_mr_ct;
}
return false;
l_isprime_mr_ct:;
}
return true;
}
bool isprime(ll val) {
if (val <= 1 || val % 2 == 0)
return val == 2;
for (ll d = 3; d*d <= val; d += 2)
if (val % d == 0)
return false;
return true;
}
ll m, n, kei;
int main() {
scanner >> n;
repeat(i, n) {
ll a;
scanner >> a;
printer << a << ' ' << isprime_mr(a) << '\n';
}
// iterate(v, 10000000000ll, 10000010000ll) {
// if (isprime(v) != isprime_mr(v))
// cerr << v << ' ' << isprime(v) << isprime_mr(v) << endl,
// abort();
// }
return 0;
}