結果

問題 No.3030 ミラー・ラビン素数判定法のテスト
ユーザー cielciel
提出日時 2017-10-22 04:03:50
言語 C
(gcc 12.3.0)
結果
WA  
実行時間 -
コード長 866 bytes
コンパイル時間 214 ms
コンパイル使用メモリ 31,872 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-18 15:48:19
合計ジャッジ時間 17,771 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,820 KB
testcase_01 AC 1 ms
6,820 KB
testcase_02 AC 1 ms
6,816 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 3,532 ms
6,816 KB
testcase_05 AC 3,300 ms
6,816 KB
testcase_06 WA -
testcase_07 AC 1,159 ms
6,820 KB
testcase_08 AC 1,164 ms
6,820 KB
testcase_09 AC 6,393 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
typedef unsigned long long ull;

ull mul(ull x,ull y,ull m){
	ull z=0;
	for(;y;y>>=1){
		if(y&1)z=(z+x)%m;
		x=(x+x)%m;
	}
	return z;
}
ull powmod(ull x,ull y,ull m){
	ull z=1;
	for(;y;y>>=1){
		if(y&1)z=mul(z,x,m);
		x=mul(x,x,m);
	}
	return z;
}

ull gcd(ull x,ull y){return y?gcd(y,x%y):x;}
bool miller_rabin(ull n){
	if(n==2)return true;
	if(n==1||n%2==0)return false;
	ull d=n-1,s=0,a=1;
	for(;d%2==0;d/=2)s+=1;
	for(int k=7;k--;){ //todo
		//for(a++;gcd(a,n)!=1;a++); //todo
		for(a=0;gcd(a,n)!=1;)a=rand()%~-n+1;
		ull r=powmod(a,d,n);
		if(r==1||r==n-1)continue;
		int t=s;
		for(;t;t--){
			r=powmod(r,2,n);
			if(r==n-1)break;
		}
		if(!t)return false;
	}
	return true;
}

int main(){
	ull t,n;
	for(scanf("%llu",&t);t--;printf("%llu %d\n",n,miller_rabin(n)))scanf("%llu",&n);
}
0