結果

問題 No.3030 ミラー・ラビン素数判定法のテスト
ユーザー しらっ亭しらっ亭
提出日時 2017-10-26 00:19:08
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 226 ms / 9,973 ms
コード長 5,700 bytes
コンパイル時間 1,304 ms
コンパイル使用メモリ 115,356 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-16 23:03:37
合計ジャッジ時間 2,199 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 1 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 128 ms
5,248 KB
testcase_05 AC 124 ms
5,248 KB
testcase_06 AC 51 ms
5,248 KB
testcase_07 AC 50 ms
5,248 KB
testcase_08 AC 49 ms
5,248 KB
testcase_09 AC 226 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <algorithm>
#include <bitset>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <utility>
#include <vector>
#include <array>
#include <unordered_map>
#include <complex>
#include <deque>
#include <cassert>
#include <cmath>
#include <functional>
#include <iomanip>
#include <chrono>
#include <random>
#include <numeric>
#include <tuple>
#include <cstring>
using namespace std;

#define forr(x,arr) for(auto&& x:arr)
#define _overload3(_1,_2,_3,name,...) name
#define _rep2(i,n) _rep3(i,0,n)
#define _rep3(i,a,b) for(int i=int(a);i<int(b);++i)
#define rep(...) _overload3(__VA_ARGS__,_rep3,_rep2,)(__VA_ARGS__)
#define _rrep2(i,n) _rrep3(i,0,n)
#define _rrep3(i,a,b) for(int i=int(b)-1;i>=int(a);i--)
#define rrep(...) _overload3(__VA_ARGS__,_rrep3,_rrep2,)(__VA_ARGS__)
#define all(x) (x).begin(),(x).end()
#define bit(n) (1LL<<(n))
#define sz(x) ((int)(x).size())
#define TEN(n) ((ll)(1e##n))
#define fst first
#define snd second

string DBG_DLM(int &i){return(i++==0?"":", ");}
#define DBG_B(exp){int i=0;os<<"{";{exp;}os<<"}";return os;}
template<class T>ostream&operator<<(ostream&os,vector<T>v);
template<class T>ostream&operator<<(ostream&os,set<T>v);
template<class T>ostream&operator<<(ostream&os,queue<T>q);
template<class T>ostream&operator<<(ostream&os,priority_queue<T>q);
template<class T,class K>ostream&operator<<(ostream&os,pair<T,K>p);
template<class T,class K>ostream&operator<<(ostream&os,map<T,K>mp);
template<class T,class K>ostream&operator<<(ostream&os,unordered_map<T,K>mp);
template<int I,class TPL>void DBG(ostream&os,TPL t){}
template<int I,class TPL,class H,class...Ts>void DBG(ostream&os,TPL t){os<<(I==0?"":", ")<<get<I>(t);DBG<I+1,TPL,Ts...>(os,t);}
template<class T,class K>void DBG(ostream&os,pair<T,K>p,string delim){os<<"("<<p.first<<delim<<p.second<<")";}
template<class...Ts>ostream&operator<<(ostream&os,tuple<Ts...>t){os<<"(";DBG<0,tuple<Ts...>,Ts...>(os,t);os<<")";return os;}
template<class T,class K>ostream&operator<<(ostream&os,pair<T,K>p){DBG(os,p,", ");return os;}
template<class T>ostream&operator<<(ostream&os,vector<T>v){DBG_B(forr(t,v){os<<DBG_DLM(i)<<t;});}
template<class T>ostream&operator<<(ostream&os,set<T>s){DBG_B(forr(t,s){os<<DBG_DLM(i)<<t;});}
template<class T>ostream&operator<<(ostream&os,queue<T>q){DBG_B(for(;q.size();q.pop()){os<<DBG_DLM(i)<<q.front();});}
template<class T>ostream&operator<<(ostream&os,priority_queue<T>q){DBG_B(for(;q.size();q.pop()){os<<DBG_DLM(i)<<q.top();});}
template<class T,class K>ostream&operator<<(ostream&os,map<T,K>m){DBG_B(forr(p,m){os<<DBG_DLM(i);DBG(os,p,"->");});}
template<class T,class K>ostream&operator<<(ostream&os,unordered_map<T,K>m){DBG_B(forr(p,m){os<<DBG_DLM(i);DBG(os,p,"->");});}
#define DBG_OVERLOAD(_1,_2,_3,_4,_5,_6,macro_name,...)macro_name
#define DBG_LINE(){char s[99];sprintf(s,"line:%3d | ",__LINE__);cerr<<s;}
#define DBG_OUTPUT(v){cerr<<(#v)<<"="<<(v);}
#define DBG1(v,...){DBG_OUTPUT(v);}
#define DBG2(v,...){DBG_OUTPUT(v);cerr<<", ";DBG1(__VA_ARGS__);}
#define DBG3(v,...){DBG_OUTPUT(v);cerr<<", ";DBG2(__VA_ARGS__);}
#define DBG4(v,...){DBG_OUTPUT(v);cerr<<", ";DBG3(__VA_ARGS__);}
#define DBG5(v,...){DBG_OUTPUT(v);cerr<<", ";DBG4(__VA_ARGS__);}
#define DBG6(v,...){DBG_OUTPUT(v);cerr<<", ";DBG5(__VA_ARGS__);}
#define DEBUG0(){DBG_LINE();cerr<<endl;}
#ifdef LOCAL
#define out(...){DBG_LINE();DBG_OVERLOAD(__VA_ARGS__,DBG6,DBG5,DBG4,DBG3,DBG2,DBG1)(__VA_ARGS__);cerr<<endl;}
#else
#define out(...)
#endif

using ll=long long;
using pii=pair<int,int>;using pll=pair<ll,ll>;using pil=pair<int,ll>;using pli=pair<ll,int>;
using vs=vector<string>;using vvs=vector<vs>;using vvvs=vector<vvs>;
using vb=vector<bool>;using vvb=vector<vb>;using vvvb=vector<vvb>;
using vi=vector<int>;using vvi=vector<vi>;using vvvi=vector<vvi>;
using vl=vector<ll>;using vvl=vector<vl>;using vvvl=vector<vvl>;
using vd=vector<double>;using vvd=vector<vd>;using vvvd=vector<vvd>;
using vpii=vector<pii>;using vvpii=vector<vpii>;using vvvpii=vector<vvpii>;
template<class A,class B>bool amax(A&a,const B&b){return b>a?a=b,1:0;}
template<class A,class B>bool amin(A&a,const B&b){return b<a?a=b,1:0;}
ll ri(){ll l;cin>>l;return l;} string rs(){string s;cin>>s;return s;}

template <class BinOp> bool is_prime_impl(const uint64_t &n, const uint64_t *witness, BinOp modmul) {
  if (n == 2) return true;
  if (n < 2 || n % 2 == 0) return false;
  const int64_t m = n - 1, d = m / (m & -m);
  auto modpow = [&](int64_t a, int64_t b) {
    int64_t res = 1;
    for (; b; b /= 2) {
      if (b & 1) res = modmul(res, a);
      a = modmul(a, a);
    }
    return res;
  };
  auto suspect = [&](uint64_t a, uint64_t t) {
    a = modpow(a, t);
    while (t != n - 1 && a != 1 && a != n - 1) {
      a = modmul(a, a);
      t = modmul(t, 2);
    }
    return a == n - 1 || t % 2 == 1;
  };
  for (const uint64_t *w = witness; *w; w++) {
    if (*w % n != 0 && !suspect(*w, d)) return false;
  }
  return true;
}
bool is_probable_prime(const uint64_t &n) {
  assert(n < (1ULL << 63));
  if (n < (1ULL << 32)) {
    constexpr uint64_t witness[] = {2, 7, 61, 0};
    auto modmul = [&](uint64_t a, uint64_t b) -> uint64_t { return a * b % n; };
    return is_prime_impl(n, witness, modmul);
  }
  else {
    constexpr uint64_t witness[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022, 0};
    auto modmul = [&](uint64_t a, uint64_t b) -> uint64_t { return (uint64_t)((__uint128_t)a * b % n); };
    return is_prime_impl(n, witness, modmul);
  }
}

void Main() {
	ll n = ri();
	cout << n << ' ' << is_probable_prime(n) << '\n';
}

signed main() {
	cin.tie(nullptr);
	ios::sync_with_stdio(false);
	int T;cin>>T;
	while (T--) Main();
	return 0;
}
0