結果

問題 No.3030 ミラー・ラビン素数判定法のテスト
ユーザー Ryuhei MoriRyuhei Mori
提出日時 2017-10-28 00:28:34
言語 C
(gcc 12.3.0)
結果
AC  
実行時間 27 ms / 9,973 ms
コード長 3,199 bytes
コンパイル時間 184 ms
コンパイル使用メモリ 31,616 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-16 23:03:49
合計ジャッジ時間 834 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 1 ms
5,248 KB
testcase_03 AC 1 ms
5,248 KB
testcase_04 AC 19 ms
5,248 KB
testcase_05 AC 19 ms
5,248 KB
testcase_06 AC 10 ms
5,248 KB
testcase_07 AC 9 ms
5,248 KB
testcase_08 AC 10 ms
5,248 KB
testcase_09 AC 27 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <unistd.h>
#include <stdint.h>

typedef __int128 int128_t;
typedef unsigned __int128 uint128_t;

char ibuf[300000];
char *ibufe = ibuf-1;
char buf[300000];
char *bufe = buf;

static inline void readall(){
  int k, t = 0;
  while((k=read(STDIN_FILENO, ibuf+t, sizeof(ibuf)-t))>0) t += k;
}

static inline uint64_t read_uintll(){
  uint64_t x=0;
  while(*(++ibufe) <'0');
  do {
    x *= 10;
    x += *ibufe-'0';
  } while(*(++ibufe) >='0');

  return x;
}

static inline uint64_t readwrite_uintll(){
  uint64_t x=0;
  while(*(++ibufe) <'0');
  do {
    x *= 10;
    x += *ibufe-'0';
    *bufe++ = *ibufe;
  } while(*(++ibufe) >='0');
  *bufe++ = ' ';

  return x;
}


static inline void write_bitln(int x){
  *bufe++ = '0'+x;
  *bufe++ = '\n';
}

static inline void writeall(){
  int k, t = 0;
  while((k=write(STDOUT_FILENO, buf+t, bufe-buf-t))>0) t += k;
}


static inline uint64_t ex_gcd(uint64_t y){
  int i;
  uint64_t u, v;
  u = 1; v = 0;
  uint64_t x = 1LL<<63;

  for(i=0;i<64;i++){
    if(u&1){
      u = (u + y) / 2;
      v = v/2 + x;
    }
    else {
      u >>= 1; v >>= 1;
    }
  }

  return v;
} 


static inline uint64_t MR(uint128_t x, uint64_t m, uint64_t n){
  uint64_t z = ((uint128_t) ((uint64_t) x * m) * n + x) >> 64;
  return z < n ? z : z - n;
}

static inline uint64_t RM(uint64_t x, uint64_t r2, uint64_t m, uint64_t n){
  return MR((uint128_t) r2 * x, m, n);
}


static inline uint64_t modpow64(uint64_t a, uint64_t k, uint64_t m, uint64_t n){
  uint64_t r;
  for(r=a,--k;k;k/=2){
    if(k&1) r = MR((uint128_t)r*a, m, n);
    a = MR((uint128_t) a*a, m, n);
  }
  return r;
}

static inline uint32_t modpow32(uint32_t a, uint32_t k, uint32_t n){
  uint32_t r;
  for(r=1;k;k/=2){
    if(k&1) r = (uint64_t)r*a%n;
    a = (uint64_t) a*a%n;
  }
  return r;
}


int is_prime32(uint32_t n){
  static const uint32_t as32[] = {2, 7, 61};
  int i, j, r;
  uint32_t d;
  if(n <= 1) return 0;
  if(n <= 3) return 1;
  if(!(n & 1)) return 0;
  r = __builtin_ctz(n-1);
  d = (n-1) >> r;
  for(i=0;i<3;i++){
    uint32_t a = as32[i] % n;
    if(a == 0) return 1;
    uint32_t t = modpow32(a, d, n);
    if(t == 1) continue;
    for(j=0;t!=n-1;j++){
      if(j == r-1) return 0;
      t = (uint64_t) t * t % n;
      if(t == 1) return 0;
    }
  }
  return 1;
}


int is_prime64(uint64_t n){
  static const uint64_t as64[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
  int i, j, r;
  uint64_t d, one, mone, r2, m;
  if(n <= 1) return 0;
  if(n <= 3) return 1;
  if(!(n & 1)) return 0;
  if(n < (1LL << 32)) return is_prime32(n);
  r = __builtin_ctzll(n-1);
  d = (n-1) >> r;
  m = ex_gcd(n);
  one = -1ULL % n + 1;
  mone = n - one;
  r2 = (uint128_t) (int128_t) -1 % n + 1;
  for(i=0;i<7;i++){
    uint64_t a = RM(as64[i], r2, m, n);
    if(a == 0) return 1;
    uint64_t t = modpow64(a, d, m, n);
    if(t == one) continue;
    for(j=0;t!=mone;j++){
      if(j == r-1) return 0;
      t = MR((uint128_t) t * t, m, n);
//      if(t == one) return 0;
    }
  }
  return 1;
}



int main(){
  int i, n;

  readall();
  n = read_uintll();
  for(i=0;i<n;i++){
    uint64_t x;
    x = readwrite_uintll();
    write_bitln(is_prime64(x));
  }
  writeall();
  return 0;
}
0