結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | Ryuhei Mori |
提出日時 | 2017-10-30 21:21:14 |
言語 | C (gcc 12.3.0) |
結果 |
AC
|
実行時間 | 17 ms / 9,973 ms |
コード長 | 4,520 bytes |
コンパイル時間 | 494 ms |
コンパイル使用メモリ | 35,128 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-16 23:04:25 |
合計ジャッジ時間 | 1,137 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 0 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 13 ms
5,248 KB |
testcase_05 | AC | 13 ms
5,248 KB |
testcase_06 | AC | 11 ms
5,248 KB |
testcase_07 | AC | 10 ms
5,248 KB |
testcase_08 | AC | 11 ms
5,248 KB |
testcase_09 | AC | 17 ms
5,248 KB |
ソースコード
#include <unistd.h> #include <stdint.h> #include <math.h> #include <stdio.h> typedef __int128 int128_t; typedef unsigned __int128 uint128_t; char ibuf[300000]; char *ibufe = ibuf-1; char buf[300000]; char *bufe = buf; static inline void readall(){ int k, t = 0; while((k=read(STDIN_FILENO, ibuf+t, sizeof(ibuf)-t))>0) t += k; } static inline uint64_t read_uintll(){ uint64_t x=0; while(*(++ibufe) <'0'); do { x *= 10; x += *ibufe-'0'; } while(*(++ibufe) >='0'); return x; } static inline uint64_t readwrite_uintll(){ uint64_t x=0; while(*(++ibufe) <'0'); do { x *= 10; x += *ibufe-'0'; *bufe++ = *ibufe; } while(*(++ibufe) >='0'); *bufe++ = ' '; return x; } static inline void write_bitln(int x){ *bufe++ = '0'+x; *bufe++ = '\n'; } static inline void writeall(){ int k, t = 0; while((k=write(STDOUT_FILENO, buf+t, bufe-buf-t))>0) t += k; } static inline uint64_t ex_gcd(uint64_t y){ int i; uint64_t u, v; u = 1; v = 0; uint64_t x = 1LL<<63; for(i=0;i<64;i++){ if(u&1){ u = (u + y) / 2; v = v/2 + x; } else { u >>= 1; v >>= 1; } } return v; } static inline uint64_t MR(uint128_t x, uint64_t m, uint64_t n){ uint64_t z = ((uint128_t) ((uint64_t) x * m) * n + x) >> 64; return z < n ? z : z - n; } static inline uint64_t RM(uint64_t x, uint64_t r2, uint64_t m, uint64_t n){ return MR((uint128_t) r2 * x, m, n); } static inline uint64_t mulmod64(uint64_t x, uint64_t y, uint64_t m, uint64_t n){ return MR((uint128_t) x*y, m, n); } static inline uint64_t modpow64(uint64_t a, uint64_t k, uint64_t m, uint64_t n){ uint64_t r; for(r=a,--k;k;k/=2){ if(k&1) r = mulmod64(r, a, m, n); a = mulmod64(a, a, m, n); } return r; } int jacobi(int64_t a, uint64_t n){ uint64_t t; int j = 1; while(a){ if(a<0){ a = -a; if((n&3)==3) j = -j; } int ba = __builtin_ctzll(a); a >>= ba; if((n%8==3||n%8==5) && (ba&1)) j = -j; if((a&n&3)==3) j = -j; t = a; a = n; n = t; a %= n; if(a>n/2) a-=n; } return n == 1 ? j : 0; } static inline uint64_t addmod64(uint64_t x, uint64_t y, uint64_t n){ return x + y >= n ? x + y - n : x + y; } static inline uint64_t submod64(uint64_t x, uint64_t y, uint64_t n){ return x >= y ? x - y : x - y + n; } int is_prime64(const uint64_t n){ // static const uint32_t ps[] = {3, 7, 11, 13, 17, 19}; int i, j, r; uint64_t d, one, r2, m; if(n <= 1) return 0; if(n <= 3) return 1; if(!(n & 1)) return 0; /* for(i=0;i<sizeof(ps)/sizeof(ps[0]);i++){ if(n==ps[i]) return 1; if(n%ps[i] == 0) return 0; } */ one = -1ULL % n + 1; r2 = (uint128_t) (int128_t) -1 % n + 1; m = ex_gcd(n); { uint64_t a, t, mone; r = __builtin_ctzll(n-1); d = (n-1) >> r; mone = n - one; a = one << 1; if(a >= n) a -= n; if(a == 0) return 1; t = modpow64(a, d, m, n); if(t != one){ for(j=0;t!=mone;j++){ if(j == r-1) return 0; t = MR((uint128_t) t * t, m, n); // if(t == one) return 0; } } } { int64_t D = 5; for(i=0;jacobi(D, n) != -1 && i<64;i++){ if(i==16){ uint32_t k = round(sqrtl(n)); if(k*k == n) return 0; } if(i&1) D -= 2; else D += 2; D = -D; } //if(i==64) puts("ERROR"); uint64_t Q = RM(D < 0 ? (1-D)/4%n : n - (D-1)/4%n, r2, m, n); uint64_t u, v, Qn; uint64_t k = (n+1) << __builtin_clzll(n+1); u = one; v = one; Qn = Q; D %= (int64_t) n; D = RM(D < 0 ? n+D : D, r2, m, n); for(k<<=1;k;k<<=1){ u = mulmod64(u,v,m,n); v = submod64(mulmod64(v,v,m,n), addmod64(Qn, Qn, n), n); Qn = mulmod64(Qn, Qn, m, n); if(k&(1ULL<<63)){ uint64_t uu = addmod64(u, v, n); if(uu&1) uu = (uu + n) >> 1; else uu >>= 1; uint64_t vv = addmod64(mulmod64(D,u,m,n), v, n); if(vv&1) vv = (vv + n) >> 1; else vv >>= 1; u = uu; v = vv; Qn = mulmod64(Qn, Q, m, n); } } if(u == 0 || v == 0) return 1; uint64_t s = __builtin_ctzll(n+1); for(i=0;i<s-1;i++){ u = mulmod64(u,v,m,n); v = submod64(mulmod64(v,v,m,n), addmod64(Qn, Qn, n), n); if(v == 0) return 1; Qn = mulmod64(Qn, Qn, m,n); } } return 0; } int main(){ int i, n; readall(); n = read_uintll(); for(i=0;i<n;i++){ uint64_t x; x = readwrite_uintll(); write_bitln(is_prime64(x)); } writeall(); return 0; }