結果

問題 No.529 帰省ラッシュ
ユーザー ei1333333ei1333333
提出日時 2017-11-07 02:13:32
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 609 ms / 4,500 ms
コード長 8,383 bytes
コンパイル時間 3,285 ms
コンパイル使用メモリ 225,808 KB
最終ジャッジ日時 2025-01-05 03:52:03
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,824 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 5 ms
6,820 KB
testcase_05 AC 4 ms
6,820 KB
testcase_06 AC 6 ms
6,820 KB
testcase_07 AC 5 ms
6,816 KB
testcase_08 AC 344 ms
29,260 KB
testcase_09 AC 332 ms
28,748 KB
testcase_10 AC 428 ms
31,628 KB
testcase_11 AC 430 ms
32,072 KB
testcase_12 AC 271 ms
30,372 KB
testcase_13 AC 361 ms
54,172 KB
testcase_14 AC 298 ms
36,300 KB
testcase_15 AC 604 ms
32,188 KB
testcase_16 AC 609 ms
32,228 KB
testcase_17 AC 402 ms
45,376 KB
testcase_18 AC 395 ms
45,988 KB
testcase_19 AC 406 ms
41,464 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:337:8: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  337 |   scanf("%d %d %d", &N, &M, &Q);
      |   ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
main.cpp:342:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  342 |     scanf("%d %d", &A, &B);
      |     ~~~~~^~~~~~~~~~~~~~~~~
main.cpp:355:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  355 |     scanf("%d %d %d", &T, &A, &B);
      |     ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~

ソースコード

diff #

#include <bits/stdc++.h>

using namespace std;

struct UnionFind
{
  vector< int > data;

  UnionFind(size_t sz)
  {
    data.assign(sz, -1);
  }

  void unite(int x, int y)
  {
    x = find(x);
    y = find(y);
    if(x != y) {
      if(data[x] > data[y]) swap(x, y);
      data[x] += data[y];
      data[y] = x;
    }
  }

  int find(int k)
  {
    if(data[k] < 0) return (k);
    return (data[k] = find(data[k]));
  }
};

struct BiConnectedComponents
{
  UnionFind uf;
  vector< vector< int > > g;
  vector< pair< int, int > > edges;
  vector< int > used, ord, low, comp;

  BiConnectedComponents(size_t v) : uf(v), g(v), used(v, 0), comp(v), ord(v), low(v)
  {
  }

  void add_edge(int x, int y)
  {
    g[x].push_back(y);
    g[y].push_back(x);
    edges.push_back(minmax(x, y));
  }

  void dfs(int idx, int &k, int par = -1)
  {
    used[idx] = true;
    ord[idx] = k++;
    low[idx] = ord[idx];

    for(auto &to : g[idx]) {
      if(!used[to]) {
        dfs(to, k, idx);
        low[idx] = min(low[idx], low[to]);
        if(ord[idx] >= low[to]) uf.unite(idx, to);
      } else if(to != par) {
        low[idx] = min(low[idx], ord[to]);
      }
    }
  }

  int operator[](int k)
  {
    return (comp[k]);
  }

  size_t size()
  {
    return (g.size());
  }

  void build(vector< vector< int > > &t)
  {
    int kk = 0;
    dfs(0, kk);

    int ptr = 0;
    vector< int > cc(g.size());
    for(int i = 0; i < g.size(); i++) {
      if(i == uf.find(i)) cc[i] = ptr++;
    }

    t.resize(ptr);
    for(int i = 0; i < g.size(); i++) {
      comp[i] = cc[uf.find(i)];
    }
    for(auto &e : edges) {
      int x = comp[e.first], y = comp[e.second];
      if(x == y) continue;
      t[x].push_back(y);
      t[y].push_back(x);
    }
  }
};


vector< vector< int > > graph;

struct CentroidPathDecomposition
{
  struct Centroid
  {
    int ParIndex, ParDepth, Deep;
    vector< int > node;

    Centroid(int idx, int dep, int deep) : ParIndex(idx), ParDepth(dep), Deep(deep) {}

    inline size_t size()
    {
      return (node.size());
    }

    inline int &operator[](int k)
    {
      return (node[k]);
    }

    inline pair< int, int > Up()
    {
      return (make_pair(ParIndex, ParDepth));
    }
  };

  vector< int > SubTreeSize, NextPath;
  vector< int > TreeIndex, TreeDepth;
  vector< Centroid > Centroids;

  void BuildSubTreeSize()
  {
    stack< pair< int, int > > s;
    s.emplace(0, -1);
    while(!s.empty()) {
      auto p = s.top();
      s.pop();
      if(~SubTreeSize[p.first]) {
        NextPath[p.first] = -1;
        for(auto &to : graph[p.first]) {
          if(p.second == to) continue;
          SubTreeSize[p.first] += SubTreeSize[to];
          if(NextPath[p.first] == -1 || SubTreeSize[NextPath[p.first]] < SubTreeSize[to]) {
            NextPath[p.first] = to;
          }
        }
      } else {
        s.push(p);
        SubTreeSize[p.first] = 1;
        for(auto &to : graph[p.first]) {
          if(p.second != to) s.emplace(to, p.first);
        }
      }
    }
  }

  void BuildPath()
  {
    stack< pair< int, int > > s;
    Centroids.emplace_back(-1, -1, 0);
    s.emplace(0, -1);
    TreeIndex[0] = 0;
    while(!s.empty()) {
      auto p = s.top();
      s.pop();
      TreeDepth[p.first] = (int) Centroids[TreeIndex[p.first]].size();
      for(auto &to : graph[p.first]) {
        if(p.second == to) continue;
        if(to == NextPath[p.first]) { // Centroid-Path
          TreeIndex[to] = TreeIndex[p.first];
        } else {                  // Not Centroid-Path
          TreeIndex[to] = (int) Centroids.size();
          Centroids.emplace_back(TreeIndex[p.first], TreeDepth[p.first], Centroids[TreeIndex[p.first]].Deep + 1);
        }
        s.emplace(to, p.first);
      }
      Centroids[TreeIndex[p.first]].node.emplace_back(p.first);
    }
  }

  void AddEdge(int x, int y)
  {
    graph[x].push_back(y);
    graph[y].push_back(x);
  }

  virtual void Build()
  {
    BuildSubTreeSize();
    BuildPath();
  }

  inline size_t size()
  {
    return (Centroids.size());
  }

  inline pair< int, int > Information(int idx)
  {
    return (make_pair(TreeIndex[idx], TreeDepth[idx]));
  }

  inline Centroid &operator[](int k)
  {
    return (Centroids[k]);
  }

  inline int LCA(int a, int b)
  {
    int TreeIdxA, TreeDepthA, TreeIdxB, TreeDepthB;
    tie(TreeIdxA, TreeDepthA) = Information(a);
    tie(TreeIdxB, TreeDepthB) = Information(b);
    while(TreeIdxA != TreeIdxB) {
      if(Centroids[TreeIdxA].Deep > Centroids[TreeIdxB].Deep) {
        tie(TreeIdxA, TreeDepthA) = Centroids[TreeIdxA].Up();
      } else {
        tie(TreeIdxB, TreeDepthB) = Centroids[TreeIdxB].Up();
      }
    }
    if(TreeDepthA > TreeDepthB) swap(TreeDepthA, TreeDepthB);
    return (Centroids[TreeIdxA][TreeDepthA]);
  }

  inline virtual void query(int a, int b, const function< void(int, int, int) > &f)
  {
    int TreeIdxA, TreeDepthA, TreeIdxB, TreeDepthB;
    tie(TreeIdxA, TreeDepthA) = Information(a);
    tie(TreeIdxB, TreeDepthB) = Information(b);
    while(TreeIdxA != TreeIdxB) {
      if(Centroids[TreeIdxA].Deep > Centroids[TreeIdxB].Deep) {
        f(TreeIdxA, 0, TreeDepthA + 1);
        tie(TreeIdxA, TreeDepthA) = Centroids[TreeIdxA].Up();
      } else {
        f(TreeIdxB, 0, TreeDepthB + 1);
        tie(TreeIdxB, TreeDepthB) = Centroids[TreeIdxB].Up();
      }
    }
    if(TreeDepthA > TreeDepthB) swap(TreeDepthA, TreeDepthB);
    f(TreeIdxA, TreeDepthA, TreeDepthB + 1);
  }

  CentroidPathDecomposition(int SZ)
  {
    SubTreeSize.assign(SZ, -1);
    NextPath.resize(SZ);
    TreeIndex.resize(SZ);
    TreeDepth.resize(SZ);
  }
};

struct TreeArray : CentroidPathDecomposition
{
  TreeArray(int sz) : CentroidPathDecomposition(sz) {}

  vector< int > index;

  void Build()
  {
    CentroidPathDecomposition::Build();
    int ptr = 0;
    for(auto &centroid : Centroids) {
      index.emplace_back(ptr);
      ptr += centroid.size();
    }
  }

  inline int get(int a)
  {
    return (index[TreeIndex[a]] + TreeDepth[a]);
  }

  inline void query(int a, int b, const function< void(int, int) > &f)
  {
    int TreeIdxA, TreeDepthA, TreeIdxB, TreeDepthB;
    tie(TreeIdxA, TreeDepthA) = Information(a);
    tie(TreeIdxB, TreeDepthB) = Information(b);
    while(TreeIdxA != TreeIdxB) {
      if(Centroids[TreeIdxA].Deep > Centroids[TreeIdxB].Deep) {
        f(index[TreeIdxA], index[TreeIdxA] + TreeDepthA + 1);
        tie(TreeIdxA, TreeDepthA) = Centroids[TreeIdxA].Up();
      } else {
        f(index[TreeIdxB], index[TreeIdxB] + TreeDepthB + 1);
        tie(TreeIdxB, TreeDepthB) = Centroids[TreeIdxB].Up();
      }
    }
    if(TreeDepthA > TreeDepthB) swap(TreeDepthA, TreeDepthB);
    f(index[TreeIdxA] + TreeDepthA, index[TreeIdxA] + TreeDepthB + 1);
  }
};


struct SegmentTree
{
  vector< int > seg;
  int sz;

  SegmentTree(int n)
  {
    sz = 1;
    while(sz < n) sz <<= 1;
    seg.assign(2 * sz - 1, -1);
  }

  int rmq(int a, int b, int k, int l, int r)
  {
    if(a >= r || b <= l) return (-1);
    if(a <= l && r <= b) return (seg[k]);
    return (max(rmq(a, b, 2 * k + 1, l, (l + r) >> 1),
                rmq(a, b, 2 * k + 2, (l + r) >> 1, r)));
  }

  int rmq(int a, int b)
  {
    return (rmq(a, b, 0, 0, sz));
  }

  void update(int k, int x)
  {
    k += sz - 1;
    seg[k] = x;
    while(k > 0) {
      k = (k - 1) >> 1;
      seg[k] = max(seg[2 * k + 1], seg[2 * k + 2]);
    }
  }
};

SegmentTree *seg;
TreeArray *press;

int main()
{
  int N, M, Q;

  scanf("%d %d %d", &N, &M, &Q);

  BiConnectedComponents bc(N);
  for(int i = 0; i < M; i++) {
    int A, B;
    scanf("%d %d", &A, &B);
    bc.add_edge(--A, --B);
  }
  bc.build(graph);
  press = new TreeArray(graph.size());
  press->Build();
  seg = new SegmentTree(graph.size());

  vector< priority_queue< int > > que(graph.size());
  unordered_map< int, int > pos;

  for(int i = 0; i < Q; i++) {
    int T, A, B;
    scanf("%d %d %d", &T, &A, &B);
    if(T == 1) {
      A = bc[--A];
      pos[B] = A;
      que[A].push(B);
      if(que[A].top() == B) seg->update(press->get(A), que[A].top());
    } else {
      int value = -1;
      press->query(bc[--A], bc[--B], [&](int a, int b) { value = max(value, seg->rmq(a, b)); });
      printf("%d\n", value);
      if(value >= 1) {
        int idx = pos[value];
        que[idx].pop();
        seg->update(press->get(idx), que[idx].empty() ? -1 : que[idx].top());
      }
    }
  }
}
0