結果
問題 | No.529 帰省ラッシュ |
ユーザー | ei1333333 |
提出日時 | 2017-11-07 02:13:32 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 393 ms / 4,500 ms |
コード長 | 8,383 bytes |
コンパイル時間 | 2,895 ms |
コンパイル使用メモリ | 235,248 KB |
実行使用メモリ | 54,040 KB |
最終ジャッジ日時 | 2024-05-10 01:00:05 |
合計ジャッジ時間 | 7,826 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 4 ms
5,376 KB |
testcase_05 | AC | 4 ms
5,376 KB |
testcase_06 | AC | 4 ms
5,376 KB |
testcase_07 | AC | 4 ms
5,376 KB |
testcase_08 | AC | 281 ms
29,256 KB |
testcase_09 | AC | 223 ms
29,004 KB |
testcase_10 | AC | 279 ms
31,628 KB |
testcase_11 | AC | 274 ms
31,828 KB |
testcase_12 | AC | 177 ms
30,492 KB |
testcase_13 | AC | 235 ms
54,040 KB |
testcase_14 | AC | 201 ms
36,424 KB |
testcase_15 | AC | 393 ms
32,344 KB |
testcase_16 | AC | 390 ms
32,300 KB |
testcase_17 | AC | 268 ms
45,376 KB |
testcase_18 | AC | 268 ms
45,936 KB |
testcase_19 | AC | 273 ms
41,500 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; struct UnionFind { vector< int > data; UnionFind(size_t sz) { data.assign(sz, -1); } void unite(int x, int y) { x = find(x); y = find(y); if(x != y) { if(data[x] > data[y]) swap(x, y); data[x] += data[y]; data[y] = x; } } int find(int k) { if(data[k] < 0) return (k); return (data[k] = find(data[k])); } }; struct BiConnectedComponents { UnionFind uf; vector< vector< int > > g; vector< pair< int, int > > edges; vector< int > used, ord, low, comp; BiConnectedComponents(size_t v) : uf(v), g(v), used(v, 0), comp(v), ord(v), low(v) { } void add_edge(int x, int y) { g[x].push_back(y); g[y].push_back(x); edges.push_back(minmax(x, y)); } void dfs(int idx, int &k, int par = -1) { used[idx] = true; ord[idx] = k++; low[idx] = ord[idx]; for(auto &to : g[idx]) { if(!used[to]) { dfs(to, k, idx); low[idx] = min(low[idx], low[to]); if(ord[idx] >= low[to]) uf.unite(idx, to); } else if(to != par) { low[idx] = min(low[idx], ord[to]); } } } int operator[](int k) { return (comp[k]); } size_t size() { return (g.size()); } void build(vector< vector< int > > &t) { int kk = 0; dfs(0, kk); int ptr = 0; vector< int > cc(g.size()); for(int i = 0; i < g.size(); i++) { if(i == uf.find(i)) cc[i] = ptr++; } t.resize(ptr); for(int i = 0; i < g.size(); i++) { comp[i] = cc[uf.find(i)]; } for(auto &e : edges) { int x = comp[e.first], y = comp[e.second]; if(x == y) continue; t[x].push_back(y); t[y].push_back(x); } } }; vector< vector< int > > graph; struct CentroidPathDecomposition { struct Centroid { int ParIndex, ParDepth, Deep; vector< int > node; Centroid(int idx, int dep, int deep) : ParIndex(idx), ParDepth(dep), Deep(deep) {} inline size_t size() { return (node.size()); } inline int &operator[](int k) { return (node[k]); } inline pair< int, int > Up() { return (make_pair(ParIndex, ParDepth)); } }; vector< int > SubTreeSize, NextPath; vector< int > TreeIndex, TreeDepth; vector< Centroid > Centroids; void BuildSubTreeSize() { stack< pair< int, int > > s; s.emplace(0, -1); while(!s.empty()) { auto p = s.top(); s.pop(); if(~SubTreeSize[p.first]) { NextPath[p.first] = -1; for(auto &to : graph[p.first]) { if(p.second == to) continue; SubTreeSize[p.first] += SubTreeSize[to]; if(NextPath[p.first] == -1 || SubTreeSize[NextPath[p.first]] < SubTreeSize[to]) { NextPath[p.first] = to; } } } else { s.push(p); SubTreeSize[p.first] = 1; for(auto &to : graph[p.first]) { if(p.second != to) s.emplace(to, p.first); } } } } void BuildPath() { stack< pair< int, int > > s; Centroids.emplace_back(-1, -1, 0); s.emplace(0, -1); TreeIndex[0] = 0; while(!s.empty()) { auto p = s.top(); s.pop(); TreeDepth[p.first] = (int) Centroids[TreeIndex[p.first]].size(); for(auto &to : graph[p.first]) { if(p.second == to) continue; if(to == NextPath[p.first]) { // Centroid-Path TreeIndex[to] = TreeIndex[p.first]; } else { // Not Centroid-Path TreeIndex[to] = (int) Centroids.size(); Centroids.emplace_back(TreeIndex[p.first], TreeDepth[p.first], Centroids[TreeIndex[p.first]].Deep + 1); } s.emplace(to, p.first); } Centroids[TreeIndex[p.first]].node.emplace_back(p.first); } } void AddEdge(int x, int y) { graph[x].push_back(y); graph[y].push_back(x); } virtual void Build() { BuildSubTreeSize(); BuildPath(); } inline size_t size() { return (Centroids.size()); } inline pair< int, int > Information(int idx) { return (make_pair(TreeIndex[idx], TreeDepth[idx])); } inline Centroid &operator[](int k) { return (Centroids[k]); } inline int LCA(int a, int b) { int TreeIdxA, TreeDepthA, TreeIdxB, TreeDepthB; tie(TreeIdxA, TreeDepthA) = Information(a); tie(TreeIdxB, TreeDepthB) = Information(b); while(TreeIdxA != TreeIdxB) { if(Centroids[TreeIdxA].Deep > Centroids[TreeIdxB].Deep) { tie(TreeIdxA, TreeDepthA) = Centroids[TreeIdxA].Up(); } else { tie(TreeIdxB, TreeDepthB) = Centroids[TreeIdxB].Up(); } } if(TreeDepthA > TreeDepthB) swap(TreeDepthA, TreeDepthB); return (Centroids[TreeIdxA][TreeDepthA]); } inline virtual void query(int a, int b, const function< void(int, int, int) > &f) { int TreeIdxA, TreeDepthA, TreeIdxB, TreeDepthB; tie(TreeIdxA, TreeDepthA) = Information(a); tie(TreeIdxB, TreeDepthB) = Information(b); while(TreeIdxA != TreeIdxB) { if(Centroids[TreeIdxA].Deep > Centroids[TreeIdxB].Deep) { f(TreeIdxA, 0, TreeDepthA + 1); tie(TreeIdxA, TreeDepthA) = Centroids[TreeIdxA].Up(); } else { f(TreeIdxB, 0, TreeDepthB + 1); tie(TreeIdxB, TreeDepthB) = Centroids[TreeIdxB].Up(); } } if(TreeDepthA > TreeDepthB) swap(TreeDepthA, TreeDepthB); f(TreeIdxA, TreeDepthA, TreeDepthB + 1); } CentroidPathDecomposition(int SZ) { SubTreeSize.assign(SZ, -1); NextPath.resize(SZ); TreeIndex.resize(SZ); TreeDepth.resize(SZ); } }; struct TreeArray : CentroidPathDecomposition { TreeArray(int sz) : CentroidPathDecomposition(sz) {} vector< int > index; void Build() { CentroidPathDecomposition::Build(); int ptr = 0; for(auto ¢roid : Centroids) { index.emplace_back(ptr); ptr += centroid.size(); } } inline int get(int a) { return (index[TreeIndex[a]] + TreeDepth[a]); } inline void query(int a, int b, const function< void(int, int) > &f) { int TreeIdxA, TreeDepthA, TreeIdxB, TreeDepthB; tie(TreeIdxA, TreeDepthA) = Information(a); tie(TreeIdxB, TreeDepthB) = Information(b); while(TreeIdxA != TreeIdxB) { if(Centroids[TreeIdxA].Deep > Centroids[TreeIdxB].Deep) { f(index[TreeIdxA], index[TreeIdxA] + TreeDepthA + 1); tie(TreeIdxA, TreeDepthA) = Centroids[TreeIdxA].Up(); } else { f(index[TreeIdxB], index[TreeIdxB] + TreeDepthB + 1); tie(TreeIdxB, TreeDepthB) = Centroids[TreeIdxB].Up(); } } if(TreeDepthA > TreeDepthB) swap(TreeDepthA, TreeDepthB); f(index[TreeIdxA] + TreeDepthA, index[TreeIdxA] + TreeDepthB + 1); } }; struct SegmentTree { vector< int > seg; int sz; SegmentTree(int n) { sz = 1; while(sz < n) sz <<= 1; seg.assign(2 * sz - 1, -1); } int rmq(int a, int b, int k, int l, int r) { if(a >= r || b <= l) return (-1); if(a <= l && r <= b) return (seg[k]); return (max(rmq(a, b, 2 * k + 1, l, (l + r) >> 1), rmq(a, b, 2 * k + 2, (l + r) >> 1, r))); } int rmq(int a, int b) { return (rmq(a, b, 0, 0, sz)); } void update(int k, int x) { k += sz - 1; seg[k] = x; while(k > 0) { k = (k - 1) >> 1; seg[k] = max(seg[2 * k + 1], seg[2 * k + 2]); } } }; SegmentTree *seg; TreeArray *press; int main() { int N, M, Q; scanf("%d %d %d", &N, &M, &Q); BiConnectedComponents bc(N); for(int i = 0; i < M; i++) { int A, B; scanf("%d %d", &A, &B); bc.add_edge(--A, --B); } bc.build(graph); press = new TreeArray(graph.size()); press->Build(); seg = new SegmentTree(graph.size()); vector< priority_queue< int > > que(graph.size()); unordered_map< int, int > pos; for(int i = 0; i < Q; i++) { int T, A, B; scanf("%d %d %d", &T, &A, &B); if(T == 1) { A = bc[--A]; pos[B] = A; que[A].push(B); if(que[A].top() == B) seg->update(press->get(A), que[A].top()); } else { int value = -1; press->query(bc[--A], bc[--B], [&](int a, int b) { value = max(value, seg->rmq(a, b)); }); printf("%d\n", value); if(value >= 1) { int idx = pos[value]; que[idx].pop(); seg->update(press->get(idx), que[idx].empty() ? -1 : que[idx].top()); } } } }