結果
問題 | No.206 数の積集合を求めるクエリ |
ユーザー | beet |
提出日時 | 2017-11-14 17:11:03 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 196 ms / 7,000 ms |
コード長 | 2,534 bytes |
コンパイル時間 | 1,654 ms |
コンパイル使用メモリ | 169,140 KB |
実行使用メモリ | 15,004 KB |
最終ジャッジ日時 | 2024-11-25 02:07:02 |
合計ジャッジ時間 | 5,558 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 1 ms
6,820 KB |
testcase_05 | AC | 1 ms
6,816 KB |
testcase_06 | AC | 3 ms
6,820 KB |
testcase_07 | AC | 3 ms
6,816 KB |
testcase_08 | AC | 3 ms
6,820 KB |
testcase_09 | AC | 3 ms
6,816 KB |
testcase_10 | AC | 1 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 7 ms
6,820 KB |
testcase_13 | AC | 6 ms
6,820 KB |
testcase_14 | AC | 7 ms
6,816 KB |
testcase_15 | AC | 7 ms
6,820 KB |
testcase_16 | AC | 6 ms
6,816 KB |
testcase_17 | AC | 78 ms
15,004 KB |
testcase_18 | AC | 56 ms
14,992 KB |
testcase_19 | AC | 76 ms
14,868 KB |
testcase_20 | AC | 53 ms
14,976 KB |
testcase_21 | AC | 63 ms
14,924 KB |
testcase_22 | AC | 61 ms
14,892 KB |
testcase_23 | AC | 76 ms
14,904 KB |
testcase_24 | AC | 196 ms
14,972 KB |
testcase_25 | AC | 196 ms
14,968 KB |
testcase_26 | AC | 165 ms
15,000 KB |
testcase_27 | AC | 136 ms
15,004 KB |
testcase_28 | AC | 184 ms
14,908 KB |
testcase_29 | AC | 180 ms
14,900 KB |
testcase_30 | AC | 175 ms
14,900 KB |
ソースコード
#include<bits/stdc++.h> using namespace std; using Int = long long; namespace FFT{ using dbl = double; struct num{ dbl x,y; num(){x=y=0;} num(dbl x,dbl y):x(x),y(y){} }; inline num operator+(num a,num b){ return num(a.x+b.x,a.y+b.y); } inline num operator-(num a,num b){ return num(a.x-b.x,a.y-b.y); } inline num operator*(num a,num b){ return num(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x); } inline num conj(num a){ return num(a.x,-a.y); } int base=1; vector<num> rts={{0,0},{1,0}}; vector<int> rev={0,1}; const dbl PI=acosl(-1.0); void ensure_base(int nbase){ if(nbase<=base) return; rev.resize(1<<nbase); for(int i=0;i<(1<<nbase);i++) rev[i]=(rev[i>>1]>>1)+((i&1)<<(nbase-1)); rts.resize(1<<nbase); while(base<nbase){ dbl angle=2*PI/(1<<(base+1)); for(int i=1<<(base-1);i<(1<<base);i++){ rts[i<<1]=rts[i]; dbl angle_i=angle*(2*i+1-(1<<base)); rts[(i<<1)+1]=num(cos(angle_i),sin(angle_i)); } base++; } } void fft(vector<num> &a,int n=-1){ if(n==-1) n=a.size(); assert((n&(n-1))==0); int zeros=__builtin_ctz(n); ensure_base(zeros); int shift=base-zeros; for(int i=0;i<n;i++) if(i<(rev[i]>>shift)) swap(a[i],a[rev[i]>>shift]); for(int k=1;k<n;k<<=1){ for(int i=0;i<n;i+=2*k){ for(int j=0;j<k;j++){ num z=a[i+j+k]*rts[j+k]; a[i+j+k]=a[i+j]-z; a[i+j]=a[i+j]+z; } } } } vector<num> fa; vector<Int> multiply(vector<int> &a,vector<int> &b){ int need=a.size()+b.size()-1; int nbase=0; while((1<<nbase)<need) nbase++; ensure_base(nbase); int sz=1<<nbase; if(sz>(int)fa.size()) fa.resize(sz); for(int i=0;i<sz;i++){ int x=(i<(int)a.size()?a[i]:0); int y=(i<(int)b.size()?b[i]:0); fa[i]=num(x,y); } fft(fa,sz); num r(0,-0.25/sz); for(int i=0;i<=(sz>>1);i++){ int j=(sz-i)&(sz-1); num z=(fa[j]*fa[j]-conj(fa[i]*fa[i]))*r; if(i!=j) fa[j]=(fa[i]*fa[i]-conj(fa[j]*fa[j]))*r; fa[i]=z; } fft(fa,sz); vector<Int> res(need); for(int i=0;i<need;i++) res[i]=fa[i].x+0.5; return res; } }; signed main(){ int l,m,n; cin>>l>>m>>n; vector<int> a(n,0),b(n,0); for(int i=0;i<l;i++) a[*istream_iterator<int>(cin)-1]=1; for(int i=0;i<m;i++) b[*istream_iterator<int>(cin)-1]=1; reverse(b.begin(),b.end()); auto c=FFT::multiply(a,b); int q; cin>>q; for(int i=0;i<q;i++) cout<<c[n-1+i]<<endl; return 0; }