結果
| 問題 |
No.206 数の積集合を求めるクエリ
|
| コンテスト | |
| ユーザー |
ei1333333
|
| 提出日時 | 2017-11-17 12:10:50 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 701 ms / 7,000 ms |
| コード長 | 3,925 bytes |
| コンパイル時間 | 2,128 ms |
| コンパイル使用メモリ | 200,144 KB |
| 最終ジャッジ日時 | 2025-01-05 04:04:33 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 28 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:143:8: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
143 | scanf("%d %d %d", &N, &M, &P);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
main.cpp:147:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
147 | scanf("%d", &x);
| ~~~~~^~~~~~~~~~
main.cpp:152:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
152 | scanf("%d", &x);
| ~~~~~^~~~~~~~~~
main.cpp:158:8: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
158 | scanf("%d", &Q);
| ~~~~~^~~~~~~~~~
ソースコード
#include<bits/stdc++.h>
using namespace std;
struct NumberTheoreticTransform
{
int mod;
int primitiveroot;
NumberTheoreticTransform(int mod, int root) : mod(mod), primitiveroot(root) {}
inline int mod_pow(int x, int n)
{
int ret = 1;
while(n > 0) {
if(n & 1) ret = mul(ret, x);
x = mul(x, x);
n >>= 1;
}
return ret;
}
inline int inverse(int x)
{
return (mod_pow(x, mod - 2));
}
inline int add(unsigned x, int y)
{
x += y;
if(x >= mod) x -= mod;
return (x);
}
inline int mul(int a, int b)
{
unsigned long long x = (long long) a * b;
unsigned xh = (unsigned) (x >> 32), xl = (unsigned) x, d, m;
asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod));
return (m);
}
void DiscreteFourierTransform(vector< int > &F, bool rev)
{
const int N = (int) F.size();
for(int i = 0, j = 1; j + 1 < N; j++) {
for(int k = N >> 1; k > (i ^= k); k >>= 1);
if(i > j) swap(F[i], F[j]);
}
int w, wn, s, t;
for(int i = 1; i < N; i <<= 1) {
w = mod_pow(primitiveroot, (mod - 1) / (i * 2));
if(rev) w = inverse(w);
for(int k = 0; k < i; k++) {
wn = mod_pow(w, k);
for(int j = 0; j < N; j += i * 2) {
s = F[j + k], t = mul(F[j + k + i], wn);
F[j + k] = add(s, t), F[j + k + i] = add(s, mod - t);
}
}
}
if(rev) {
int temp = inverse(N);
for(int i = 0; i < N; i++) F[i] = mul(F[i], temp);
}
}
vector< int > Multiply(const vector< int > &A, const vector< int > &B)
{
int sz = 1;
while(sz < A.size() + B.size() - 1) sz <<= 1;
vector< int > F(sz), G(sz);
for(int i = 0; i < A.size(); i++) F[i] = A[i];
for(int i = 0; i < B.size(); i++) G[i] = B[i];
DiscreteFourierTransform(F, false);
DiscreteFourierTransform(G, false);
for(int i = 0; i < sz; i++) F[i] = mul(F[i], G[i]);
DiscreteFourierTransform(F, true);
F.resize(A.size() + B.size() - 1);
return (F);
}
};
inline int add(unsigned x, int y, int mod)
{
x += y;
if(x >= mod) x -= mod;
return (x);
}
inline int mul(int a, int b, int mod)
{
unsigned long long x = (long long) a * b;
unsigned xh = (unsigned) (x >> 32), xl = (unsigned) x, d, m;
asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod));
return (m);
}
inline int mod_pow(int x, int n, int mod)
{
int ret = 1;
while(n > 0) {
if(n & 1) ret = mul(ret, x, mod);
x = mul(x, x, mod);
n >>= 1;
}
return ret;
}
inline int inverse(int x, int mod)
{
return (mod_pow(x, mod - 2, mod));
}
vector< int > AnyModNTTMultiply(vector< int > a, vector< int > b, int mod)
{
for(auto &x : a) x %= mod;
for(auto &x : b) x %= mod;
NumberTheoreticTransform ntt1(167772161, 3);
NumberTheoreticTransform ntt2(469762049, 3);
NumberTheoreticTransform ntt3(1224736769, 3);
auto x = ntt1.Multiply(a, b);
auto y = ntt2.Multiply(a, b);
auto z = ntt3.Multiply(a, b);
const int m1 = ntt1.mod, m2 = ntt2.mod, m3 = ntt3.mod;
const int m1_inv_m2 = inverse(m1, m2);
const int m12_inv_m3 = inverse(mul(m1, m2, m3), m3);
const int m12_mod = mul(m1, m2, mod);
vector< int > ret(x.size());
for(int i = 0; i < x.size(); i++) {
int v1 = mul(add(y[i], m2 - x[i], m2), m1_inv_m2, m2);
int v2 = mul(add(z[i], m3 - add(x[i], mul(m1, v1, m3), m3), m3), m12_inv_m3, m3);
ret[i] = add(x[i], add(mul(m1, v1, mod), mul(m12_mod, v2, mod), mod), mod);
}
return ret;
}
int main()
{
int N, M, P;
scanf("%d %d %d", &N, &M, &P);
vector< int > A(P), B(P);
for(int i = 0; i < N; i++) {
int x;
scanf("%d", &x);
A[x - 1] = 1;
}
for(int i = 0; i < M; i++) {
int x;
scanf("%d", &x);
B[x - 1] = 1;
}
reverse(begin(B), end(B));
auto C = AnyModNTTMultiply(A, B, 1e9 + 1);
int Q;
scanf("%d", &Q);
for(int i = 0; i < Q; i++) printf("%d\n", C[P + i - 1]);
}
ei1333333