結果
問題 | No.206 数の積集合を求めるクエリ |
ユーザー | ei1333333 |
提出日時 | 2017-11-17 12:10:50 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 590 ms / 7,000 ms |
コード長 | 3,925 bytes |
コンパイル時間 | 2,530 ms |
コンパイル使用メモリ | 207,256 KB |
実行使用メモリ | 9,072 KB |
最終ジャッジ日時 | 2024-05-04 02:38:00 |
合計ジャッジ時間 | 11,299 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | AC | 1 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 13 ms
6,940 KB |
testcase_07 | AC | 12 ms
6,944 KB |
testcase_08 | AC | 12 ms
6,940 KB |
testcase_09 | AC | 13 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 13 ms
6,940 KB |
testcase_13 | AC | 12 ms
6,948 KB |
testcase_14 | AC | 13 ms
6,940 KB |
testcase_15 | AC | 13 ms
6,940 KB |
testcase_16 | AC | 13 ms
6,944 KB |
testcase_17 | AC | 560 ms
9,068 KB |
testcase_18 | AC | 571 ms
9,064 KB |
testcase_19 | AC | 576 ms
8,940 KB |
testcase_20 | AC | 575 ms
8,940 KB |
testcase_21 | AC | 558 ms
8,940 KB |
testcase_22 | AC | 552 ms
8,936 KB |
testcase_23 | AC | 562 ms
8,936 KB |
testcase_24 | AC | 579 ms
9,068 KB |
testcase_25 | AC | 564 ms
9,068 KB |
testcase_26 | AC | 590 ms
9,068 KB |
testcase_27 | AC | 569 ms
9,072 KB |
testcase_28 | AC | 568 ms
8,944 KB |
testcase_29 | AC | 567 ms
9,064 KB |
testcase_30 | AC | 564 ms
8,944 KB |
ソースコード
#include<bits/stdc++.h> using namespace std; struct NumberTheoreticTransform { int mod; int primitiveroot; NumberTheoreticTransform(int mod, int root) : mod(mod), primitiveroot(root) {} inline int mod_pow(int x, int n) { int ret = 1; while(n > 0) { if(n & 1) ret = mul(ret, x); x = mul(x, x); n >>= 1; } return ret; } inline int inverse(int x) { return (mod_pow(x, mod - 2)); } inline int add(unsigned x, int y) { x += y; if(x >= mod) x -= mod; return (x); } inline int mul(int a, int b) { unsigned long long x = (long long) a * b; unsigned xh = (unsigned) (x >> 32), xl = (unsigned) x, d, m; asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod)); return (m); } void DiscreteFourierTransform(vector< int > &F, bool rev) { const int N = (int) F.size(); for(int i = 0, j = 1; j + 1 < N; j++) { for(int k = N >> 1; k > (i ^= k); k >>= 1); if(i > j) swap(F[i], F[j]); } int w, wn, s, t; for(int i = 1; i < N; i <<= 1) { w = mod_pow(primitiveroot, (mod - 1) / (i * 2)); if(rev) w = inverse(w); for(int k = 0; k < i; k++) { wn = mod_pow(w, k); for(int j = 0; j < N; j += i * 2) { s = F[j + k], t = mul(F[j + k + i], wn); F[j + k] = add(s, t), F[j + k + i] = add(s, mod - t); } } } if(rev) { int temp = inverse(N); for(int i = 0; i < N; i++) F[i] = mul(F[i], temp); } } vector< int > Multiply(const vector< int > &A, const vector< int > &B) { int sz = 1; while(sz < A.size() + B.size() - 1) sz <<= 1; vector< int > F(sz), G(sz); for(int i = 0; i < A.size(); i++) F[i] = A[i]; for(int i = 0; i < B.size(); i++) G[i] = B[i]; DiscreteFourierTransform(F, false); DiscreteFourierTransform(G, false); for(int i = 0; i < sz; i++) F[i] = mul(F[i], G[i]); DiscreteFourierTransform(F, true); F.resize(A.size() + B.size() - 1); return (F); } }; inline int add(unsigned x, int y, int mod) { x += y; if(x >= mod) x -= mod; return (x); } inline int mul(int a, int b, int mod) { unsigned long long x = (long long) a * b; unsigned xh = (unsigned) (x >> 32), xl = (unsigned) x, d, m; asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod)); return (m); } inline int mod_pow(int x, int n, int mod) { int ret = 1; while(n > 0) { if(n & 1) ret = mul(ret, x, mod); x = mul(x, x, mod); n >>= 1; } return ret; } inline int inverse(int x, int mod) { return (mod_pow(x, mod - 2, mod)); } vector< int > AnyModNTTMultiply(vector< int > a, vector< int > b, int mod) { for(auto &x : a) x %= mod; for(auto &x : b) x %= mod; NumberTheoreticTransform ntt1(167772161, 3); NumberTheoreticTransform ntt2(469762049, 3); NumberTheoreticTransform ntt3(1224736769, 3); auto x = ntt1.Multiply(a, b); auto y = ntt2.Multiply(a, b); auto z = ntt3.Multiply(a, b); const int m1 = ntt1.mod, m2 = ntt2.mod, m3 = ntt3.mod; const int m1_inv_m2 = inverse(m1, m2); const int m12_inv_m3 = inverse(mul(m1, m2, m3), m3); const int m12_mod = mul(m1, m2, mod); vector< int > ret(x.size()); for(int i = 0; i < x.size(); i++) { int v1 = mul(add(y[i], m2 - x[i], m2), m1_inv_m2, m2); int v2 = mul(add(z[i], m3 - add(x[i], mul(m1, v1, m3), m3), m3), m12_inv_m3, m3); ret[i] = add(x[i], add(mul(m1, v1, mod), mul(m12_mod, v2, mod), mod), mod); } return ret; } int main() { int N, M, P; scanf("%d %d %d", &N, &M, &P); vector< int > A(P), B(P); for(int i = 0; i < N; i++) { int x; scanf("%d", &x); A[x - 1] = 1; } for(int i = 0; i < M; i++) { int x; scanf("%d", &x); B[x - 1] = 1; } reverse(begin(B), end(B)); auto C = AnyModNTTMultiply(A, B, 1e9 + 1); int Q; scanf("%d", &Q); for(int i = 0; i < Q; i++) printf("%d\n", C[P + i - 1]); }