結果
| 問題 |
No.181 A↑↑N mod M
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2017-11-18 15:41:46 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,222 bytes |
| コンパイル時間 | 2,611 ms |
| コンパイル使用メモリ | 209,464 KB |
| 最終ジャッジ日時 | 2025-01-05 04:06:35 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 6 |
| other | AC * 15 WA * 3 TLE * 18 MLE * 1 |
ソースコード
#include <bits/stdc++.h>
#define show(x) cerr << #x << " = " << x << endl
using namespace std;
using ll = long long;
using pii = pair<int, int>;
using vi = vector<int>;
template <typename T>
ostream& operator<<(ostream& os, const vector<T>& v)
{
os << "sz=" << v.size() << "\n[";
for (const auto& p : v) {
os << p << ",";
}
os << "]\n";
return os;
}
template <typename S, typename T>
ostream& operator<<(ostream& os, const pair<S, T>& p)
{
os << "(" << p.first << "," << p.second
<< ")";
return os;
}
constexpr ll MOD = 1e9 + 7;
template <typename T>
constexpr T INF = numeric_limits<T>::max() / 100;
ll A, N, M;
vector<ll> prime;
map<ll, ll> A_factor;
template <typename T>
T extgcd(const T a, const T b, T& x, T& y) // ax+by=gcd(a,b)
{
T d = a;
if (b != 0) {
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
} else {
x = 1;
y = 0;
}
return d;
}
ll power(const ll n, const ll mod)
{
if (n == 0) {
return 1;
}
if (n % 2 == 1) {
return (mod != -1) ? ((power(n - 1, mod) * A) % mod) : (power(n - 1, mod) * A);
} else {
const ll pp = power(n / 2, mod);
return (mod != -1) ? ((pp * pp) % mod) : (pp * pp);
}
}
template <typename T>
pair<T, T> ChineseRemainderTheorem(const pair<T, T> a1, const pair<T, T> a2)
{
assert(gcd(a1.first, a2.first) == 1);
const T p1 = a1.first;
const T m1 = a1.second;
const T p2 = a2.first;
const T m2 = a2.second;
if (m1 == m2) {
return make_pair(p1 * p2, m1);
} else {
T x, y;
extgcd(p1, p2, x, y);
assert(p1 * x + p2 * y == 1);
x *= (m2 - m1);
y *= (m2 - m1);
const T p = p1 * p2;
return make_pair(p, (((p1 * x + m1) % p) + p) % p);
}
}
ll over(const ll n, const long double x) // A↑↑n >= x なら 0, それ以外なら A↑↑n
{
if (n == 0) {
return (1 >= x) ? 0 : 1;
}
const long double lx = log2(x) / log2(A);
const ll p = over(n - 1, lx);
if (p == 0) {
return 0;
} else {
return power(p, -1);
}
}
ll rem(const ll n, const ll mod) // A↑↑n (mod m)
{
if (n == 0) {
return 1 % mod;
} else if (mod == 1) {
return 0;
} else {
ll num = mod;
vector<pair<ll, ll>> fac;
vector<ll> phi;
vector<ll> count;
for (const ll p : prime) {
if (num % p == 0) {
ll beki = 1;
ll cnt = 0;
while (num % p == 0) {
beki *= p;
num /= p;
cnt++;
}
fac.push_back(make_pair(beki, 1));
phi.push_back(beki / p * (p - 1));
count.push_back(cnt);
}
if (num == 1) {
break;
}
}
const ll size = fac.size();
for (ll i = 0; i < size; i++) {
if (A_factor[fac[i].first] > 0) {
const ll ind = over(n - 1, (long double)A_factor[fac[i].first] / count[i]);
if (ind == 0) {
fac[i].second = 0;
} else {
fac[i].second = power(ind, fac[i].first);
}
} else {
const ll m = rem(n - 1, phi[i]);
fac[i].second = power(m, fac[i].first);
}
}
pair<ll, ll> result = fac[0];
for (ll i = 1; i < size; i++) {
result = ChineseRemainderTheorem(result, fac[i]);
}
return result.second;
}
}
int main()
{
cin >> A >> N >> M;
vector<bool> isprime(M + 1, true);
for (ll i = 2; i <= M; i++) {
if (isprime[i]) {
for (ll j = 2; i * j <= M; j++) {
isprime[i * j] = false;
}
}
}
for (ll i = 2; i <= M; i++) {
if (isprime[i]) {
prime.push_back(i);
}
}
ll num = A;
for (const ll p : prime) {
ll cnt = 0;
while (num % p == 0) {
cnt++;
num /= p;
}
A_factor[p] = cnt;
}
cout << rem(N, M) << endl;
return 0;
}