結果
問題 | No.303 割れません |
ユーザー | Min_25 |
提出日時 | 2017-11-24 18:31:23 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 32 ms / 10,000 ms |
コード長 | 11,956 bytes |
コンパイル時間 | 1,489 ms |
コンパイル使用メモリ | 114,196 KB |
実行使用メモリ | 7,096 KB |
最終ジャッジ日時 | 2024-11-27 07:06:42 |
合計ジャッジ時間 | 2,957 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,816 KB |
testcase_03 | AC | 14 ms
6,816 KB |
testcase_04 | AC | 26 ms
6,820 KB |
testcase_05 | AC | 26 ms
6,820 KB |
testcase_06 | AC | 26 ms
6,820 KB |
testcase_07 | AC | 32 ms
6,860 KB |
testcase_08 | AC | 32 ms
7,012 KB |
testcase_09 | AC | 32 ms
6,984 KB |
testcase_10 | AC | 2 ms
6,816 KB |
testcase_11 | AC | 26 ms
6,820 KB |
testcase_12 | AC | 32 ms
7,096 KB |
testcase_13 | AC | 15 ms
6,820 KB |
testcase_14 | AC | 15 ms
6,820 KB |
testcase_15 | AC | 8 ms
6,816 KB |
testcase_16 | AC | 2 ms
6,820 KB |
ソースコード
#include <cstdio> #include <cassert> #include <cmath> #include <cstring> #include <iostream> #include <algorithm> #include <vector> #include <map> #include <set> #include <functional> #include <stack> #include <queue> #include <tuple> #define getchar getchar_unlocked #define putchar putchar_unlocked #define _rep(_1, _2, _3, _4, name, ...) name #define rep2(i, n) rep3(i, 0, n) #define rep3(i, a, b) rep4(i, a, b, 1) #define rep4(i, a, b, c) for (int i = int(a); i < int(b); i += int(c)) #define rep(...) _rep(__VA_ARGS__, rep4, rep3, rep2, _)(__VA_ARGS__) using namespace std; using i64 = long long; using u8 = unsigned char; using u32 = unsigned; using u64 = unsigned long long; using f80 = long double; int get_int() { int n, c, sign = 0; while ((c = getchar()) < '-'); if (c == '-') sign = 1, n = 0; else n = c - '0'; while ((c = getchar()) >= '0') n = n * 10 + c - '0'; return sign ? -n : n; } namespace ntt { using word_t = u64; using dword_t = __uint128_t; static constexpr word_t mul_inv(word_t n, int e=6, word_t x=1) { return e == 0 ? x : mul_inv(n, e-1, x*(2-x*n)); } template <word_t mod, word_t prim_root> class UnsafeMod { private: static const int word_bits = 8 * sizeof(word_t); public: static constexpr word_t inv = mul_inv(mod); static constexpr word_t r2 = -dword_t(mod) % mod; static constexpr int level = __builtin_ctzll(mod - 1); static_assert(inv * mod == 1, "invalid 1/M modulo 2^@."); UnsafeMod() {} UnsafeMod(word_t n) : x(init(n)) {}; static word_t modulus() { return mod; } static word_t init(word_t w) { return reduce(dword_t(w) * r2); } static word_t reduce(const dword_t w) { return word_t(w >> word_bits) + mod - word_t((dword_t(word_t(w) * inv) * mod) >> word_bits); } static UnsafeMod omega() { return UnsafeMod(prim_root).pow((mod - 1) >> level); } UnsafeMod& operator += (UnsafeMod rhs) { x += rhs.x; return *this; } UnsafeMod& operator -= (UnsafeMod rhs) { x += 3 * mod - rhs.x; return *this; } UnsafeMod& operator *= (UnsafeMod rhs) { x = reduce(dword_t(x) * rhs.x); return *this; } UnsafeMod operator + (UnsafeMod rhs) const { return UnsafeMod(*this) += rhs; } UnsafeMod operator - (UnsafeMod rhs) const { return UnsafeMod(*this) -= rhs; } UnsafeMod operator * (UnsafeMod rhs) const { return UnsafeMod(*this) *= rhs; } word_t get() const { return reduce(x) % mod; } void set(word_t n) { x = n; } UnsafeMod pow(word_t e) const { UnsafeMod ret = UnsafeMod(1); for (UnsafeMod base = *this; e; e >>= 1, base *= base) if (e & 1) ret *= base; return ret; } UnsafeMod inverse() const { return pow(mod - 2); } friend ostream& operator << (ostream& os, const UnsafeMod& m) { return os << m.get(); } static void debug() { printf("%llu %llu %llu %llu\n", mod, inv, r2, omega().get()); } word_t x; }; template <typename mod_t> void transform(mod_t* A, int n, const mod_t* roots, const mod_t* iroots) { const int logn = __builtin_ctz(n), nh = n >> 1, lv = mod_t::level; const mod_t one = mod_t(1), imag = roots[lv - 2]; mod_t dw[lv - 1]; dw[0] = roots[lv - 3]; for (int i = 1; i < lv - 2; ++i) dw[i] = dw[i - 1] * iroots[lv - 1 - i] * roots[lv - 3 - i]; dw[lv - 2] = dw[lv - 3] * iroots[1]; if (logn & 1) for (int i = 0; i < nh; ++i) { mod_t a = A[i], b = A[i + nh]; A[i] = a + b; A[i + nh] = a - b; } for (int e = logn & ~1; e >= 2; e -= 2) { const int m = 1 << e, m4 = m >> 2; mod_t w2 = one; for (int i = 0; i < n; i += m) { const mod_t w1 = w2 * w2, w3 = w1 * w2; for (int j = i; j < i + m4; ++j) { mod_t a0 = A[j + m4 * 0] * one, a1 = A[j + m4 * 1] * w2; mod_t a2 = A[j + m4 * 2] * w1, a3 = A[j + m4 * 3] * w3; mod_t t02p = a0 + a2, t13p = a1 + a3; mod_t t02m = a0 - a2, t13m = (a1 - a3) * imag; A[j + m4 * 0] = t02p + t13p; A[j + m4 * 1] = t02p - t13p; A[j + m4 * 2] = t02m + t13m; A[j + m4 * 3] = t02m - t13m; } w2 *= dw[__builtin_ctz(~(i >> e))]; } } } template <typename mod_t> void itransform(mod_t* A, int n, const mod_t* roots, const mod_t* iroots) { const int logn = __builtin_ctz(n), nh = n >> 1, lv = mod_t::level; const mod_t one = mod_t(1), imag = iroots[lv - 2]; mod_t dw[lv - 1]; dw[0] = iroots[lv - 3]; for (int i = 1; i < lv - 2; ++i) dw[i] = dw[i - 1] * roots[lv - 1 - i] * iroots[lv - 3 - i]; dw[lv - 2] = dw[lv - 3] * roots[1]; for (int e = 2; e <= logn; e += 2) { const int m = 1 << e, m4 = m >> 2; mod_t w2 = one; for (int i = 0; i < n; i += m) { const mod_t w1 = w2 * w2, w3 = w1 * w2; for (int j = i; j < i + m4; ++j) { mod_t a0 = A[j + m4 * 0], a1 = A[j + m4 * 1]; mod_t a2 = A[j + m4 * 2], a3 = A[j + m4 * 3]; mod_t t01p = a0 + a1, t23p = a2 + a3; mod_t t01m = a0 - a1, t23m = (a2 - a3) * imag; A[j + m4 * 0] = (t01p + t23p) * one; A[j + m4 * 2] = (t01p - t23p) * w1; A[j + m4 * 1] = (t01m + t23m) * w2; A[j + m4 * 3] = (t01m - t23m) * w3; } w2 *= dw[__builtin_ctz(~(i >> e))]; } } if (logn & 1) for (int i = 0; i < nh; ++i) { mod_t a = A[i], b = A[i + nh]; A[i] = a + b; A[i + nh] = a - b; } } template <typename mod_t> void convolve(mod_t* A, int s1, mod_t* B, int s2, bool cyclic=false) { const int s = cyclic ? max(s1, s2) : s1 + s2 - 1; const int size = 1 << (31 - __builtin_clz(2 * s - 1)); assert(size <= (i64(1) << mod_t::level)); mod_t roots[mod_t::level], iroots[mod_t::level]; roots[0] = mod_t::omega(); for (int i = 1; i < mod_t::level; ++i) roots[i] = roots[i - 1] * roots[i - 1]; iroots[0] = roots[0].inverse(); for (int i = 1; i < mod_t::level; ++i) iroots[i] = iroots[i - 1] * iroots[i - 1]; fill(A + s1, A + size, 0); transform(A, size, roots, iroots); const mod_t inv = mod_t(size).inverse(); if (A == B && s1 == s2) { for (int i = 0; i < size; ++i) A[i] *= A[i] * inv; } else { fill(B + s2, B + size, 0); transform(B, size, roots, iroots); for (int i = 0; i < size; ++i) A[i] *= B[i] * inv; } itransform(A, size, roots, iroots); } } // namespace ntt using m64_1 = ntt::UnsafeMod<1121333583512862721, 51>; using m64_2 = ntt::UnsafeMod<1128298388379402241, 23>; // <= 1.14e18 (sub.D = 3) template <u64 Modulus> class FastDiv21 { using u128 = __uint128_t; static constexpr int s = __builtin_clzll(Modulus); static constexpr u64 m = Modulus << s; static constexpr u64 v = u64(~(u128(m) << 64) / m); public: pair<u64, u64> divmod(u128 a) const { a <<= s; u64 ah = a >> 64, al = a; u128 q = u128(ah) * v + a; u64 qh = u64(q >> 64) + 1, ql = q, r = al - qh * m; if (r > ql) --qh, r += m; if (r >= m) ++qh, r -= m; return {qh, r >> s}; } friend u64 operator % (u128 a, const FastDiv21& b) { return b.divmod(a).second; } friend u64 operator / (u128 a, const FastDiv21& b) { return b.divmod(a).first; } }; using word_t = u64; using sword_t = i64; using dword_t = __uint128_t; constexpr int kWordBits = sizeof(word_t) * 8; template <word_t Base> class BigInteger : public vector<word_t> { static_assert(word_t(Base) < (word_t(1) << (kWordBits - 1)), "Base is too large."); public: BigInteger() : BigInteger(0) {} BigInteger(word_t n) : vector<word_t>(1, n) {} BigInteger(size_t s, word_t n) : vector<word_t>(s, n) {} void normalize() { while (size() > 1 && back() == 0) pop_back(); } BigInteger operator + (const BigInteger& rhs) const { // inefficient size_t s = max(size(), rhs.size()) + 1; BigInteger ret(s, 0); copy(begin(), end(), ret.begin()); word_t carry = 0; for (size_t i = 0; i < rhs.size(); ++i) { word_t a = ret[i] + rhs[i] + carry; carry = 0; if (a >= Base) ++carry, a -= Base; ret[i] = a; } for (size_t i = rhs.size(); carry; ++i) { word_t a = ret[i] + carry; carry = 0; if (a >= Base) ++carry, a -= Base; ret[i] = a; } ret.normalize(); return ret; } BigInteger operator - (const BigInteger& rhs) const { // inefficient assert(size() > rhs.size() || (size() == rhs.size() && back() >= rhs.back())); BigInteger ret(size(), 0); copy(begin(), end(), ret.begin()); word_t carry = 0; for (size_t i = 0; i < rhs.size(); ++i) { word_t a = ret[i] - rhs[i] - carry; carry = 0; if (sword_t(a) < 0) a += Base, carry = 1; ret[i] = a; } for (size_t i = rhs.size(); carry; ++i) { word_t a = ret[i] - carry; carry = 0; if (sword_t(a) < 0) a += Base, carry = 1; ret[i] = a; } ret.normalize(); return ret; } BigInteger operator * (const BigInteger& rhs) const { int s1 = size(), s2 = rhs.size(), s = s1 + s2 - 1; int ntt_size = 1 << (31 - __builtin_clz(2 * s - 1)); vector<m64_1> f1(ntt_size); copy(begin(), end(), f1.begin()); if (this != &rhs) { vector<m64_1> g1(ntt_size); copy(rhs.begin(), rhs.end(), g1.begin()); ntt::convolve(f1.data(), s1, g1.data(), s2); } else { ntt::convolve(f1.data(), s1, f1.data(), s1); } vector<m64_2> f2(ntt_size); copy(begin(), end(), f2.begin()); if (this != &rhs) { vector<m64_2> g2(ntt_size); copy(rhs.begin(), rhs.end(), g2.begin()); ntt::convolve(f2.data(), s1, g2.data(), s2); } else { ntt::convolve(f2.data(), s1, f2.data(), s1); } BigInteger ret(s1 + s2, 0); auto fdiv = FastDiv21<Base>(); const auto p1 = m64_1::modulus(), p2 = m64_2::modulus(); const auto inv = m64_2(p1).inverse(); dword_t carry = 0; for (int i = 0; i < s1 + s2 - 1; ++i) { auto r1 = f1[i].get(), r2 = f2[i].get(); // not optimal auto prod = r1 + dword_t((m64_2(r2 + p2 - r1) * inv).get()) * p1; prod += carry; word_t ph = prod >> kWordBits, pl = prod; word_t qh = ph / Base, r = ph % Base; word_t ql; tie(ql, r) = fdiv.divmod(dword_t(r) << kWordBits | pl); carry = dword_t(qh) << kWordBits | ql; ret[i] = r; } ret[s1 + s2 - 1] = carry; ret.normalize(); return ret; } BigInteger pow(word_t e) const { if (e == 0) return BigInteger(1); BigInteger ret = *this; for (int mask = (1 << __lg(e)) >> 1; mask; mask >>= 1) { ret = ret * ret; if (mask & e) ret = ret * (*this); } return ret; } }; constexpr u64 ten_pow(int e, u64 x=1) { return e <= 0 ? x : ten_pow(e - 1, x * 10); } template <int Digits> class DecimalBigInteger : public BigInteger< ten_pow(Digits) > { using BigInt = BigInteger< ten_pow(Digits) >; public: DecimalBigInteger(int a) : BigInt(a) {} DecimalBigInteger(const BigInt& b) : BigInt(b) {} void print() const { printf("%llu", BigInt::back()); char str[Digits + 1] = {}; for (int i = BigInt::size() - 2; i >= 0; --i) { auto a = (*this)[i]; for (int j = 0; j < Digits; ++j) { str[Digits - 1 - j] = a % 10 + '0'; a /= 10; } for (int j = 0; j < Digits; ++j) putchar(str[j]); } puts(""); } }; using BigInt = DecimalBigInteger<15>; pair<BigInt, BigInt> fib(int n) { if (n <= 2) { return {BigInt((n + 1) >> 1), BigInt((n + 2) >> 1)}; } auto res = fib((n >> 1) - 1); auto &a = res.first, &b = res.second; BigInt aa = a * a, bb = b * b, bb2 = bb + bb; BigInt c = bb + aa, d = (bb2 + bb2) - aa; if (n & 2) d = d - 2; else d = d + 2; if (n & 1) { return {d, d + d - c}; } else { return {d - c, d}; } } void solve() { int N; while (~scanf("%d", &N)) { if (N == 2) { puts("3"); puts("INF"); } else { BigInt ans(0); if (N & 1) { ans = fib(N).first; } else { auto res = fib(N / 2 - 1); ans = res.first * res.second; ans = ans + ans; } printf("%d\n", N); ans.print(); } } } int main() { clock_t beg = clock(); solve(); clock_t end = clock(); fprintf(stderr, "%.3f sec\n", double(end - beg) / CLOCKS_PER_SEC); return 0; }