結果

問題 No.626 Randomized 01 Knapsack
ユーザー りあんりあん
提出日時 2017-12-15 22:34:11
言語 C#(csc)
(csc 3.9.0)
結果
WA  
(最新)
AC  
(最初)
実行時間 -
コード長 15,275 bytes
コンパイル時間 1,158 ms
コンパイル使用メモリ 119,500 KB
実行使用メモリ 27,852 KB
最終ジャッジ日時 2024-05-10 01:02:50
合計ジャッジ時間 4,526 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 29 ms
19,456 KB
testcase_01 AC 30 ms
19,584 KB
testcase_02 AC 28 ms
19,584 KB
testcase_03 AC 29 ms
19,456 KB
testcase_04 AC 29 ms
19,456 KB
testcase_05 AC 29 ms
19,456 KB
testcase_06 AC 33 ms
19,840 KB
testcase_07 AC 35 ms
19,712 KB
testcase_08 AC 37 ms
19,968 KB
testcase_09 AC 40 ms
20,352 KB
testcase_10 AC 56 ms
20,608 KB
testcase_11 AC 151 ms
22,272 KB
testcase_12 AC 176 ms
22,400 KB
testcase_13 AC 41 ms
22,016 KB
testcase_14 AC 68 ms
22,272 KB
testcase_15 AC 130 ms
22,528 KB
testcase_16 WA -
testcase_17 AC 178 ms
22,400 KB
testcase_18 AC 156 ms
22,144 KB
testcase_19 AC 164 ms
22,528 KB
testcase_20 AC 226 ms
22,528 KB
testcase_21 AC 40 ms
22,144 KB
testcase_22 AC 405 ms
22,528 KB
testcase_23 WA -
testcase_24 AC 40 ms
22,272 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc)
Copyright (C) Microsoft Corporation. All rights reserved.

ソースコード

diff #

using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;
using System.IO;
using System.Text;
using System.Diagnostics;

using static util;
using P = pair<int, int>;

using Binary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.ParameterExpression,
                           System.Linq.Expressions.BinaryExpression>;
using Unary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.UnaryExpression>;

class Program
{
    static StreamWriter sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false };
    static Scan sc = new Scan();
    const int M = 1000000007;
    const long LM = (long)1e18;
    const double eps = 1e-11;
    static readonly int[] dd = { 0, 1, 0, -1, 0 };
    static void Main()
    {
        long w;
        sc.Multi(out n, out w);
        p = new pair<long, long>[n];
        q = new double[n];
        var b = new bool[n];
        for (int i = 0; i < n; i++)
        {
            p[i] = sc.LongArr.make_pair();
            q[i] = p[i].v1 / (double)p[i].v2;
            b[i] = true;
        }
        Array.Sort(q, p);
        var al = calc(w, b, 0);
        var upper = al.v1;
        var lower = al.v2;
        if (lower == upper) {
            DBG(lower);
            return;
        }
        long best = lower;
        long addv = 0;
        int rem = n;
        var use = new bool[n];
        while (true)
        {
            bool changed = false;
            for (int i = 0; i < n; i++)
            {
                if (!b[i]) continue;
                if (p[i].v2 > w) {
                    b[i] = false;
                    --rem;
                    changed = true;
                    continue;
                }
                b[i] = false;
                var p1 = calc(w, b, addv);
                var p2 = calc(w - p[i].v2, b, addv + p[i].v1);
                best = Math.Max(best, p1.v2);
                best = Math.Max(best, p2.v2);
                b[i] = true;
                if (p1.v1 < best) {
                    b[i] = false;
                    --rem;
                    w -= p[i].v2;
                    addv += p[i].v1;
                    use[i] = true;
                    changed = true;
                }
                else if (p2.v1 < best) {
                    b[i] = false;
                    --rem;
                    changed = true;
                }
            }
            if (!changed) break;
        }
        if (rem <= 25) {
            var lis = new List<pair<long, long>>();
            long pv = 0;
            for (int i = 0; i < n; i++)
            {
                if (b[i]) lis.Add(p[i]);
                if (use[i]) {
                    pv += p[i].v1;
                }
            }
            long ans = pv;
            for (int i = 0; i < (1 << rem); i++)
            {
                long vv = 0, ww = 0;
                for (int j = 0; j < rem; j++)
                {
                    if (((i >> j) & 1) == 1) {
                        vv += lis[j].v1;
                        ww += lis[j].v2;
                        if (ww > w) break;
                    }
                }
                if (ww <= w) {
                    ans = Math.Max(ans, pv + vv);
                }
            }
            DBG(ans);
            return;
        }
        Prt(best);
        sw.Flush();
    }
    static int n;
    static pair<long, long>[] p;
    static double[] q;

    static pair<long, long> calc(long w, bool[] b, long addv) {
        long upper = 0, lower = 0;
        long upw = 0, lww = 0;
        for (int i = n - 1; i >= 0; i--)
        {
            if (!b[i]) continue;
            if (upw + p[i].v2 <= w) {
                upper += p[i].v1;
                upw += p[i].v2;
            }
            else if (upw < w) {
                upper += (long)(p[i].v1 * (double)(w - upw) / p[i].v2 + eps);
                upw = w;
            }
            if (lww + p[i].v2 <= w) {
                lower += p[i].v1;
                lww += p[i].v2;
            }
        }
        return make_pair(upper + addv, lower + addv);
    }

    static void DBG(string a) => Console.WriteLine(a);
    static void DBG<T>(IEnumerable<T> a) => DBG(string.Join(" ", a));
    static void DBG(params object[] a) => DBG(string.Join(" ", a));
    static void Prt(string a) => sw.WriteLine(a);
    static void Prt<T>(IEnumerable<T> a) => Prt(string.Join(" ", a));
    static void Prt(params object[] a) => Prt(string.Join(" ", a));
}
class pair<T, U> : IComparable<pair<T, U>> where T : IComparable<T> where U : IComparable<U>
{
    public T v1;
    public U v2;
    public pair(T v1, U v2) {
        this.v1 = v1;
        this.v2 = v2;
    }
    public int CompareTo(pair<T, U> a) => v1.CompareTo(a.v1) != 0 ? v1.CompareTo(a.v1) : v2.CompareTo(a.v2);
    public override string ToString() => v1 + " " + v2;
}
static class util
{
    public static pair<T, T> make_pair<T>(this IList<T> l) where T : IComparable<T> => make_pair(l[0], l[1]);
    public static pair<T, U> make_pair<T, U>(T v1, U v2) where T : IComparable<T> where U : IComparable<U> => new pair<T, U>(v1, v2);
    public static T sqr<T>(T a) => Operator<T>.Multiply(a, a);
    public static T Max<T>(params T[] a) => a.Max();
    public static T Min<T>(params T[] a) => a.Min();
    public static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; }
    public static void swap<T>(this IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; }
    public static T[] copy<T>(this IList<T> a) {
        var ret = new T[a.Count];
        for (int i = 0; i < a.Count; i++) ret[i] = a[i];
        return ret;
    }
}
static class Operator<T>
{
    static readonly ParameterExpression x = Expression.Parameter(typeof(T), "x");
    static readonly ParameterExpression y = Expression.Parameter(typeof(T), "y");
    public static readonly Func<T, T, T> Add = Lambda(Expression.Add);
    public static readonly Func<T, T, T> Subtract = Lambda(Expression.Subtract);
    public static readonly Func<T, T, T> Multiply = Lambda(Expression.Multiply);
    public static readonly Func<T, T, T> Divide = Lambda(Expression.Divide);
    public static readonly Func<T, T> Plus = Lambda(Expression.UnaryPlus);
    public static readonly Func<T, T> Negate = Lambda(Expression.Negate);
    public static Func<T, T, T> Lambda(Binary op) => Expression.Lambda<Func<T, T, T>>(op(x, y), x, y).Compile();
    public static Func<T, T> Lambda(Unary op) => Expression.Lambda<Func<T, T>>(op(x), x).Compile();
}

class Scan
{
    public int Int => int.Parse(Str);
    public long Long => long.Parse(Str);
    public double Double => double.Parse(Str);
    public string Str => Console.ReadLine().Trim();
    public P Pii { get { var ar = IntArr; return new P(ar[0], ar[1]); } }
    public int[] IntArr => StrArr.Select(int.Parse).ToArray();
    public long[] LongArr => StrArr.Select(long.Parse).ToArray();
    public double[] DoubleArr => StrArr.Select(double.Parse).ToArray();
    public string[] StrArr => Str.Split(new []{' '}, System.StringSplitOptions.RemoveEmptyEntries);
    bool eq<T, U>() => typeof(T).Equals(typeof(U));
    T ct<T, U>(U a) => (T)Convert.ChangeType(a, typeof(T));
    T cv<T>(string s) => eq<T, int>()    ? ct<T, int>(int.Parse(s))
                       : eq<T, long>()   ? ct<T, long>(long.Parse(s))
                       : eq<T, double>() ? ct<T, double>(double.Parse(s))
                       : eq<T, char>()   ? ct<T, char>(s[0])
                                         : ct<T, string>(s);
    public void Multi<T>(out T a) => a = cv<T>(Str);
    public void Multi<T, U>(out T a, out U b)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); }
    public void Multi<T, U, V>(out T a, out U b, out V c)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); }
    public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); }
    public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); }
    public void Multi<T, U, V, W, X, Y>(out T a, out U b, out V c, out W d, out X e, out Y f)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); f = cv<Y>(ar[5]); }
}
static class mymath
{
    public static long Mod = 1000000007;
    public static bool isprime(long a) {
        if (a < 2) return false;
        for (long i = 2; i * i <= a; i++) if (a % i == 0) return false;
        return true;
    }
    public static bool[] sieve(int n) {
        var p = new bool[n + 1];
        for (int i = 2; i <= n; i++) p[i] = true;
        for (int i = 2; i * i <= n; i++) if (p[i]) for (int j = i * i; j <= n; j += i) p[j] = false;
        return p;
    }
    public static List<int> getprimes(int n) {
        var prs = new List<int>();
        var p = sieve(n);
        for (int i = 2; i <= n; i++) if (p[i]) prs.Add(i);
        return prs;
    }
    public static long[][] E(int n) {
        var ret = new long[n][];
        for (int i = 0; i < n; i++) { ret[i] = new long[n]; ret[i][i] = 1; }
        return ret;
    }
    public static double[][] dE(int n) {
        var ret = new double[n][];
        for (int i = 0; i < n; i++) { ret[i] = new double[n]; ret[i][i] = 1; }
        return ret;
    }
    public static long[][] pow(long[][] A, long n) {
        if (n == 0) return E(A.Length);
        var t = pow(A, n / 2);
        if ((n & 1) == 0) return mul(t, t);
        return mul(mul(t, t), A);
    }
    public static double[][] pow(double[][] A, long n) {
        if (n == 0) return dE(A.Length);
        var t = pow(A, n / 2);
        if ((n & 1) == 0) return mul(t, t);
        return mul(mul(t, t), A);
    }
    public static double dot(double[] x, double[] y) {
        int n = x.Length;
        double ret = 0;
        for (int i = 0; i < n; i++) ret += x[i] * y[i];
        return ret;
    }
    public static double _dot(double[] x, double[] y) {
        int n = x.Length;
        double ret = 0, r = 0;
        for (int i = 0; i < n; i++) {
            double s = ret + (x[i] * y[i] + r);
            r = (x[i] * y[i] + r) - (s - ret);
            ret = s;
        }
        return ret;
    }
    public static long dot(long[] x, long[] y) {
        int n = x.Length;
        long ret = 0;
        for (int i = 0; i < n; i++) ret = (ret + x[i] * y[i]) % Mod;
        return ret;
    }
    public static T[][] trans<T>(T[][] A) {
        int n = A[0].Length, m = A.Length;
        var ret = new T[n][];
        for (int i = 0; i < n; i++) { ret[i] = new T[m]; for (int j = 0; j < m; j++) ret[i][j] = A[j][i]; }
        return ret;
    }
    public static double[] mul(double a, double[] x) {
        int n = x.Length;
        var ret = new double[n];
        for (int i = 0; i < n; i++) ret[i] = a * x[i];
        return ret;
    }
    public static long[] mul(long a, long[] x) {
        int n = x.Length;
        var ret = new long[n];
        for (int i = 0; i < n; i++) ret[i] = a * x[i] % Mod;
        return ret;
    }
    public static double[] mul(double[][] A, double[] x) {
        int n = A.Length;
        var ret = new double[n];
        for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]);
        return ret;
    }
    public static long[] mul(long[][] A, long[] x) {
        int n = A.Length;
        var ret = new long[n];
        for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]);
        return ret;
    }
    public static double[][] mul(double a, double[][] A) {
        int n = A.Length;
        var ret = new double[n][];
        for (int i = 0; i < n; i++) ret[i] = mul(a, A[i]);
        return ret;
    }
    public static long[][] mul(long a, long[][] A) {
        int n = A.Length;
        var ret = new long[n][];
        for (int i = 0; i < n; i++) ret[i] = mul(a, A[i]);
        return ret;
    }
    public static double[][] mul(double[][] A, double[][] B) {
        int n = A.Length;
        var Bt = trans(B);
        var ret = new double[n][];
        for (int i = 0; i < n; i++) ret[i] = mul(Bt, A[i]);
        return ret;
    }
    public static long[][] mul(long[][] A, long[][] B) {
        int n = A.Length;
        var Bt = trans(B);
        var ret = new long[n][];
        for (int i = 0; i < n; i++) ret[i] = mul(Bt, A[i]);
        return ret;
    }
    public static long[] add(long[] x, long[] y) {
        int n = x.Length;
        var ret = new long[n];
        for (int i = 0; i < n; i++) ret[i] = (x[i] + y[i]) % Mod;
        return ret;
    }
    public static long[][] add(long[][] A, long[][] B) {
        int n = A.Length;
        var ret = new long[n][];
        for (int i = 0; i < n; i++) ret[i] = add(A[i], B[i]);
        return ret;
    }
    public static long pow(long a, long b) {
        if (a >= Mod) return pow(a % Mod, b);
        if (a == 0) return 0;
        if (b == 0) return 1;
        var t = pow(a, b / 2);
        if ((b & 1) == 0) return t * t % Mod;
        return t * t % Mod * a % Mod;
    }
    public static long inv(long a) => pow(a, Mod - 2);
    public static long gcd(long a, long b) {
        while (b > 0) { var t = a % b; a = b; b = t; } return a;
    }
    // a x + b y = gcd(a, b)
    public static long extgcd(long a, long b, out long x, out long y) {
        long g = a; x = 1; y = 0;
        if (b > 0) { g = extgcd(b, a % b, out y, out x); y -= a / b * x; }
        return g;
    }
    public static long lcm(long a, long b) => a / gcd(a, b) * b;

    static long[] facts;
    public static long[] setfacts(int n) {
        facts = new long[n + 1];
        facts[0] = 1;
        for (int i = 0; i < n; i++) facts[i + 1] = facts[i] * (i + 1) % Mod;
        return facts;
    }
    public static long comb(int n, int r) {
        if (n < 0 || r < 0 || r > n) return 0;
        if (n - r < r) r = n - r;
        if (r == 0) return 1;
        if (r == 1) return n;
        if (facts != null && facts.Length > n) return facts[n] * inv(facts[r]) % Mod * inv(facts[n - r]) % Mod;
        int[] numer = new int[r], denom = new int[r];
        for (int k = 0; k < r; k++) { numer[k] = n - r + k + 1; denom[k] = k + 1; }
        for (int p = 2; p <= r; p++) {
            int piv = denom[p - 1];
            if (piv > 1) {
                int ofst = (n - r) % p;
                for (int k = p - 1; k < r; k += p) { numer[k - ofst] /= piv; denom[k] /= piv; }
            }
        }
        long ret = 1;
        for (int k = 0; k < r; k++) if (numer[k] > 1) ret = ret * numer[k] % Mod;
        return ret;
    }
    public static long[][] getcombs(int n) {
        var ret = new long[n + 1][];
        for (int i = 0; i <= n; i++) {
            ret[i] = new long[i + 1];
            ret[i][0] = ret[i][i] = 1;
            for (int j = 1; j < i; j++) ret[i][j] = (ret[i - 1][j - 1] + ret[i - 1][j]) % Mod;
        }
        return ret;
    }
    // nC0, nC2, ..., nCn
    public static long[] getcomb(int n) {
        var ret = new long[n + 1];
        ret[0] = 1;
        for (int i = 0; i < n; i++) ret[i + 1] = ret[i] * (n - i) % Mod * inv(i + 1) % Mod;
        return ret;
    }
}
0