結果
| 問題 |
No.194 フィボナッチ数列の理解(1)
|
| コンテスト | |
| ユーザー |
sune232002
|
| 提出日時 | 2015-04-26 22:27:58 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 8 ms / 5,000 ms |
| コード長 | 5,632 bytes |
| コンパイル時間 | 1,400 ms |
| コンパイル使用メモリ | 165,216 KB |
| 実行使用メモリ | 7,692 KB |
| 最終ジャッジ日時 | 2024-07-05 03:00:06 |
| 合計ジャッジ時間 | 2,679 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define REP(i,n) for(int i=0;i<(int)(n);++i)
#define REPR(i,n) for (int i=(int)(n)-1;i>=0;--i)
#define FOR(i,c) for(__typeof((c).begin())i=(c).begin();i!=(c).end();++i)
#define ALL(c) (c).begin(), (c).end()
#define valid(y,x,h,w) (0<=y&&y<h&&0<=x&&x<w)
#define tpl(...) make_tuple(__VA_ARGS__)
const int INF = 0x3f3f3f3f;
const double EPS = 1e-8;
const double PI = acos(-1);
const int dy[] = {-1,0,1,0};
const int dx[] = {0,1,0,-1};
typedef long long ll;
typedef pair<int,int> pii;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
template<typename Ch,typename Tr,typename C,typename=decltype(begin(C()))>basic_ostream<Ch,Tr>& operator<<(basic_ostream<Ch,Tr>&os,
const C& c){os<<'[';for(auto i=begin(c);i!=end(c);++i)os<<(i==begin(c)?"":" ")<<*i;return os<<']';}
template<class S,class T>ostream&operator<<(ostream &o,const pair<S,T>&t){return o<<'('<<t.first<<','<<t.second<<')';}
template<int N,class Tp>void output(ostream&,const Tp&){}
template<int N,class Tp,class,class ...Ts>void output(ostream &o,const Tp&t){if(N)o<<',';o<<get<N>(t);output<N+1,Tp,Ts...>(o,t);}
template<class ...Ts>ostream&operator<<(ostream&o,const tuple<Ts...>&t){o<<'(';output<0,tuple<Ts...>,Ts...>(o,t);return o<<')';}
template<class T>void output(T t,char z=10){if(t<0)t=-t,putchar(45);int c[20];
int k=0;while(t)c[k++]=t%10,t/=10;for(k||(c[k++]=0);k;)putchar(c[--k]^48);putchar(z);}
template<class T>void outputs(T t){output(t);}
template<class S,class ...T>void outputs(S a,T...t){output(a,32);outputs(t...);}
template<class T>void output(T *a,int n){REP(i,n)cout<<a[i]<<(i!=n-1?',':'\n');}
template<class T>void output(T *a,int n,int m){REP(i,n)output(a[i],m);}
template<class T>bool input(T &t){int n=1,c;for(t=0;!isdigit(c=getchar())&&~c&&c-45;);
if(!~c)return 0;for(c-45&&(n=0,t=c^48);isdigit(c=getchar());)t=10*t+c-48;t=n?-t:t;return 1;}
template<class S,class ...T>bool input(S&a,T&...t){input(a);return input(t...);}
template<class T>bool inputs(T *a, int n) { REP(i,n) if(!input(a[i])) return 0; return 1;}
template<int MOD>
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(ll s) { if ((x = s % MOD) < 0) x += MOD; }
ModInt operator+=(ModInt rhs) { if ((x+=rhs.x) >= MOD) x -= MOD; return *this; }
ModInt operator-=(ModInt rhs) { if ((x-=rhs.x) < 0) x += MOD; return *this; }
ModInt operator*=(ModInt rhs) { x = (ll)x*rhs.x % MOD; return *this; }
ModInt operator+(ModInt rhs) const { return ModInt(*this) += rhs; }
ModInt operator-(ModInt rhs) const { return ModInt(*this) -= rhs; }
ModInt operator*(ModInt rhs) const { return ModInt(*this) *= rhs; }
ModInt operator/=(ModInt rhs) {
static const ll inv2 = ModInt(2).inv().x; // 2で割るのは特別に保存してみる
ll i = (rhs.x == 2 ? inv2 : rhs.inv().x);
x = x*i%MOD; return *this;
}
ModInt operator/(ModInt rhs) const { return ModInt(*this) /= rhs; }
ModInt inv() { return pow(MOD-2); }
ModInt pow(ll n) const {
ModInt r = 1, t = x;
for (;n;n>>=1,t*=t) if (n&1) r *= t;
return r;
}
static ModInt strnum(const string &n) {ModInt a = 0; for (char c:n) a = a*10+c-'0'; return a;}
friend ostream& operator<<(ostream &os, const ModInt rhs){ return os << rhs.x; }
};
typedef ModInt<int(1e9+7)> mint;
template<class T, int H, int W>
struct Matrix {
T v[H][W];
int h,w;
T* operator[](int i) { return v[i]; }
const T* operator[](int i) const { return v[i]; }
Matrix() : h(0),w(0) {}
Matrix(int h, int w) : h(h),w(w) { REP(i,h)REP(j,w)v[i][j] = 0; }
Matrix(const vector<vector<T> > &u) : h(u.size()),w(u[0].size()) {
REP(i,h)REP(j,w)v[i][j]=u[i][j];
}
static Matrix identity(int n) {
Matrix A(n,n);
REP(i,n) A[i][i] = 1;
return A;
}
Matrix operator*(const Matrix &B) const {
Matrix res(h,B.w);
REP(i,h)REP(j,B.w) REP(k,w) res[i][j] += v[i][k] * B[k][j];
return res;
}
Matrix& operator*=(const Matrix &B) { return *this = *this * B; }
Matrix& operator+=(const Matrix &B) { REP(i,h)REP(j,w)v[i][j]+=B[i][j]; return *this; }
Matrix& operator-=(const Matrix &B) { REP(i,h)REP(j,w)v[i][j]-=B[i][j]; return *this; }
Matrix operator+(const Matrix &B) const { return Matrix(*this)+=B; }
Matrix operator-(const Matrix &B) const { return Matrix(*this)-=B; }
Matrix pow(ll n) {
Matrix A(*this);
Matrix B = identity(h);
for (;n;n>>=1) {
if (n&1) B *= A;
A *= A;
}
return B;
}
// vector
vector<T> operator*(const vector<T> &b) const {
vector<T> res(w);
REP(i,h) REP(j,w) res[i] += v[i][j] * b[j];
return res;
}
friend ostream &operator<<(ostream &os, const Matrix &rhs) {
REP(i,rhs.h) REP(j,rhs.w) os << rhs[i][j] << (j!=rhs.w-1?' ':'\n');
return os;
}
};
typedef Matrix<mint,50,50> mat;
int A[100000];
mint F[1000001];
void solve1(int n, int K) {
mint sum = 0;
REP(i,n) {
F[i] = A[i];
sum += F[i];
}
mint S = sum;
for (int i=n; i<K; ++i) {
F[i] = sum;
sum += F[i] - F[i-n];
S += F[i];
}
cout << F[K-1] << " " << S << endl;
}
void solve2(int n, ll K) {
mat M(n+1,n+1);
vector<mint> v(n+1);
REP(i,n) v[i] = A[n-1-i];
v[n] = A[0];
REP(i,n) M[0][i] = 1;
REP(i,n-1) M[1+i][i] = 1;
M[n][n] = 1;
M[n][n-2] = 1;
// cout << M << endl;
vector<mint> t = M.pow(K-1) * v;
// cout << t << endl;
cout << t[n-1] << " " << t[n] << endl;
}
int main() {
ll n,k;
while(input(n,k)) {
REP(i,n) input(A[i]);
if (k<=1000000) {
solve1(n,k);
} else {
solve2(n,k);
}
}
}
sune232002