結果
| 問題 |
No.621 3 x N グリッド上のドミノの置き方の数
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2017-12-21 00:45:58 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 13 ms / 3,000 ms |
| コード長 | 4,389 bytes |
| コンパイル時間 | 1,011 ms |
| コンパイル使用メモリ | 83,252 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-12-16 07:30:06 |
| 合計ジャッジ時間 | 3,310 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 66 |
ソースコード
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
const int mod = 1e9 + 7;
struct Modint {
int n;
Modint(int n = 0) : n(n) {}
};
Modint operator+(Modint a, Modint b) { return Modint((a.n += b.n) >= mod ? a.n - mod : a.n); }
Modint operator-(Modint a, Modint b) { return Modint((a.n -= b.n) < 0 ? a.n + mod : a.n); }
Modint operator*(Modint a, Modint b) { return Modint(1LL * a.n * b.n % mod); }
Modint &operator+=(Modint &a, Modint b) { return a = a + b; }
Modint &operator-=(Modint &a, Modint b) { return a = a - b; }
Modint &operator*=(Modint &a, Modint b) { return a = a * b; }
Modint modinv(Modint a) {
if (a.n == 1) return 1;
return modinv(mod % a.n) * (mod - mod / a.n);
}
Modint operator/(Modint a, Modint b) {
return a * modinv(b);
}
std::vector<Modint> berlekamp_massey(std::vector<Modint> s) {
using K = Modint;
const int N = s.size();
std::vector<K> C(N);
std::vector<K> B(N);
C[0] = 1;
B[0] = 1;
int L = 0;
int m = 1;
K b = 1;
for (int n = 0; n < N; n++) {
K d = s[n];
for (int i = 1; i <= L; i++) d += C[i] * s[n - i];
if (d.n == 0) {
m++;
} else if (2 * L <= n) {
auto T = C;
for (int i = 0; i + m < N; i++) C[i + m] -= B[i] * (d / b);
L = n + 1 - L;
B = T;
b = d;
m = 1;
} else {
for (int i = 0; i + m < N; i++) C[i + m] -= B[i] * (d / b);
m++;
}
}
C.resize(L + 1);
reverse(C.begin(), C.end());
return C;
}
vector<Modint> poly_mod(vector<Modint> a, const vector<Modint> &m) {
const int n = m.size();
for (int i = a.size() - 1; i >= m.size(); i--) {
for (int j = 0; j < m.size(); j++) {
a[i - n + j] += a[i] * m[j];
}
}
a.resize(m.size());
return a;
}
// a*b mod m(x)
vector<Modint> poly_mul(const vector<Modint> &a, const vector<Modint> &b, const vector<Modint> &m) {
vector<Modint> ret(a.size() + b.size() - 1);
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < b.size(); j++) {
ret[i + j] += a[i] * b[j];
}
}
return poly_mod(ret, m);
}
// a^b mod m(x)
vector<Modint> poly_pow(vector<Modint> a, long long b, const vector<Modint> &m) {
vector<Modint> ret(1);
ret[0] = 1;
while (b > 0) {
if (b & 1) ret = poly_mul(ret, a, m);
a = poly_mul(a, a, m);
b >>= 1;
}
return poly_mod(ret, m);
}
Modint linear_recurrence_relation(vector<Modint> a, long long k) {
auto m = berlekamp_massey(a);
m.pop_back();
for (Modint &a : m) {
a *= mod - 1;
}
auto p = poly_pow({0, 1}, k, m);
Modint res = 0;
for (int i = 0; i < p.size(); i++) {
res += a[i] * p[i];
}
return res;
}
bool g[3][50];
Modint memo[50][8 * 8];
bool vis[50][8 * 8];
Modint f(int n, int k) {
if (k == n * 3) {
bool any = false;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < n; j++) {
any |= i + 1 < 3 && !g[i][j] && !g[i + 1][j];
any |= j + 1 < n && !g[i][j] && !g[i][j + 1];
}
}
return !any;
}
int y = k % 3;
int x = k / 3;
if (y == 0 && x >= 2) {
bool any = false;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < x; j++) {
any |= i + 1 < 3 && !g[i][j] && !g[i + 1][j];
any |= j + 1 < x && !g[i][j] && !g[i][j + 1];
}
}
if (any) return 0;
int bit = 0;
bit = bit << 1 | g[0][x - 1];
bit = bit << 1 | g[1][x - 1];
bit = bit << 1 | g[2][x - 1];
bit = bit << 1 | g[0][x];
bit = bit << 1 | g[1][x];
bit = bit << 1 | g[2][x];
if (vis[x][bit]) return memo[x][bit];
}
Modint res = f(n, k + 1);
if (y + 1 < 3 && !g[y][x] && !g[y + 1][x]) {
g[y][x] = g[y + 1][x] = true;
res += f(n, k + 1);
g[y][x] = g[y + 1][x] = false;
}
if (x + 1 < n && !g[y][x] && !g[y][x + 1]) {
g[y][x] = g[y][x + 1] = true;
res += f(n, k + 1);
g[y][x] = g[y][x + 1] = false;
}
if (y == 0 && x >= 2) {
int bit = 0;
bit = bit << 1 | g[0][x - 1];
bit = bit << 1 | g[1][x - 1];
bit = bit << 1 | g[2][x - 1];
bit = bit << 1 | g[0][x];
bit = bit << 1 | g[1][x];
bit = bit << 1 | g[2][x];
vis[x][bit] = true;
memo[x][bit] = res;
}
return res;
}
int main() {
vector<Modint> a;
for (int i = 0; i < 40; i++) {
memset(vis, false, sizeof(vis));
a.emplace_back(f(i, 0));
}
long long n;
cin >> n;
cout << linear_recurrence_relation(a, n).n << endl;
}