結果

問題 No.622 点と三角柱の内外判定
ユーザー Sebastian KingSebastian King
提出日時 2017-12-22 00:18:20
言語 C++11
(gcc 13.3.0)
結果
AC  
実行時間 2 ms / 1,500 ms
コード長 2,358 bytes
コンパイル時間 1,526 ms
コンパイル使用メモリ 161,988 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-12-17 22:58:09
合計ジャッジ時間 2,517 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 32
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int MM = 1e9 + 7;
const double eps = 1e-8;
const int MAXN = 2e6 + 10;
int n, m;
void prework(){
}
void read(){
}
struct Pt3{
double x, y, z;
};
inline double sqr(double x){
return x * x;
}
inline Pt3 operator - (const Pt3 & a){
return (Pt3){ -a.x, -a.y, -a.z};
}
inline Pt3 operator + (const Pt3 & a, const Pt3 & b){
return (Pt3){a.x + b.x, a.y + b.y, a.z + b.z};
}
inline Pt3 operator - (const Pt3 & a, const Pt3 & b){
return (Pt3){a.x - b.x, a.y - b.y, a.z - b.z};
}
inline Pt3 operator * (const Pt3 & a, double u){
return (Pt3){a.x * u, a.y * u, a.z * u};
}
inline double operator % (const Pt3 & a, const Pt3 & b){
return a.x * b.x + a.y * b.y + a.z * b.z;
}
inline Pt3 operator * (const Pt3 & a, const Pt3 & b){
return (Pt3){
a.y * b.z - a.z * b.y,
a.z * b.x - a.x * b.z,
a.x * b.y - a.y * b.x
};
}
int cmp_side(const Pt3 & a, const Pt3 & b){
return a.y * b.z - a.z * b.y
|| a.z * b.x - a.x * b.z
|| a.x * b.y - a.y * b.x;
}
ll cmp_axis(const Pt3 & a, const Pt3 & b){
ll x = a.x * b.x, y = a.y * b.y, z = a.z * b.z;
return x + y + z;
}
double len(const Pt3 & a){
return sqrt(sqr(a.x) + sqr(a.y) + sqr(a.z));
}
Pt3 a[4];
/*
int sgn(const Pt3 & a, const Pt3 & b){
double tmp = len(a * b);
if (fabs(tmp) < eps) return 0;
else return (tmp < 0 ? -1 : 1);
}*/
double area(const Pt3 & a, const Pt3 & b, const Pt3 & c){
return len((b-a)*(c-a));
}
double eql(double a, double b){
return fabs(a-b)>=eps+fabs(a)*eps?a-b:0;
}
void solve(int casi){
// cout << "Case #" << casi << ": ";
for (int i = 0; i < 4; i++)
cin >> a[i].x >> a[i].y >> a[i].z;
Pt3 AB = a[1] - a[0];
Pt3 AC = a[2] - a[0];
Pt3 Nm = AB * AC;
double h = (Nm % (a[0] - a[3])) * 1.0 / len(Nm);
Nm = Nm * (h / len(Nm));
a[3] = a[3] + Nm;
/*
int sgn1 = sgn(a[0] - a[3], a[1] - a[3]);
int sgn2 = sgn(a[1] - a[3], a[2] - a[3]);
int sgn3 = sgn(a[2] - a[3], a[0] - a[3]);*/
//if (sgn1 == sgn2 && sgn2 == sgn3)
if (0==eql(area(a[0], a[1], a[2]), area(a[0],a[1],a[3])+area(a[0],a[2],a[3])+area(a[1],a[2],a[3])))
puts("YES");
else
puts("NO");
}
void printans(){
}
int main(){
// std::ios::sync_with_stdio(false);
prework();
int T = 1;
// cin>>T;
for(int i = 1; i <= T; i++){
read();
solve(i);
printans();
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0