結果
| 問題 |
No.194 フィボナッチ数列の理解(1)
|
| コンテスト | |
| ユーザー |
femto
|
| 提出日時 | 2015-04-26 23:33:23 |
| 言語 | C#(csc) (csc 3.9.0) |
| 結果 |
AC
|
| 実行時間 | 95 ms / 5,000 ms |
| コード長 | 5,812 bytes |
| コンパイル時間 | 3,329 ms |
| コンパイル使用メモリ | 116,056 KB |
| 実行使用メモリ | 40,892 KB |
| 最終ジャッジ日時 | 2024-07-05 02:28:46 |
| 合計ジャッジ時間 | 4,323 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System;
using System.Diagnostics;
using System.Collections.Generic;
using System.Linq;
using Enu = System.Linq.Enumerable;
class Solution {
long MOD = (long)1e9 + 7;
long N, K;
int[] A;
void calc() {
rlo(out N, out K);
A = ria((int)N);
if(K <= (int)1e6) {
long[] f = new long[K + 1], s = new long[K + 1];
for(int i = 1; i <= K; i++) {
if(i <= N)
f[i] = A[i - 1];
else
f[i] = (s[i - 1] - s[i - N - 1] + MOD) % MOD;
s[i] = (s[i - 1] + f[i]) % MOD;
}
Console.WriteLine(f[K] + " " + s[K]);
return;
}
else {
long[,] M = new long[N + 1, N + 1];
for(int i = 0; i < N - 1; i++) {
M[i, i + 1] = 1;
}
for(int i = 0; i < N; i++) {
M[N - 1, i] = 1;
}
M[N, 0] = M[N, N] = 1;
M = Algorithm.Matrix.Pow(M, K - N);
long[,] a = new long[N + 1, 1];
for(int i = 0; i < N; i++)
a[i, 0] = A[i];
var b = Algorithm.Matrix.mul(M, a);
long s = 0;
for(int i = 0; i <= N; i++)
s = (s + b[i, 0]) % MOD;
Console.WriteLine(b[N - 1, 0] + " " + s);
return;
}
}
static void Main(string[] args) {
new Solution().calc();
}
#region
static int ri() { return int.Parse(Console.ReadLine()); }
static int[] ria(int n) {
if(n <= 0) { Console.ReadLine(); return new int[0]; }
else return Console.ReadLine().Trim().Split(' ').Select(int.Parse).ToArray();
}
static void rio(out int p1) { p1 = ri(); }
static void rio(out int p1, out int p2) { var r = ria(2); p1 = r[0]; p2 = r[1]; }
static void rio(out int p1, out int p2, out int p3) { var r = ria(3); p1 = r[0]; p2 = r[1]; p3 = r[2]; }
static void rio(out int p1, out int p2, out int p3, out int p4) { var r = ria(4); p1 = r[0]; p2 = r[1]; p3 = r[2]; p4 = r[3]; }
static void rio(out int p1, out int p2, out int p3, out int p4, out int p5) { var r = ria(5); p1 = r[0]; p2 = r[1]; p3 = r[2]; p4 = r[3]; p5 = r[4]; }
static long rl() { return long.Parse(Console.ReadLine()); }
static long[] rla(int n) {
if(n <= 0) { Console.ReadLine(); return new long[0]; }
else return Console.ReadLine().Trim().Split(' ').Select(long.Parse).ToArray();
}
static void rlo(out long p1) { p1 = rl(); }
static void rlo(out long p1, out long p2) { var r = rla(2); p1 = r[0]; p2 = r[1]; }
static void rlo(out long p1, out long p2, out long p3) { var r = rla(3); p1 = r[0]; p2 = r[1]; p3 = r[2]; }
static void rlo(out long p1, out long p2, out long p3, out long p4) { var r = rla(4); p1 = r[0]; p2 = r[1]; p3 = r[2]; p4 = r[3]; }
static void rlo(out long p1, out long p2, out long p3, out long p4, out long p5) { var r = rla(5); p1 = r[0]; p2 = r[1]; p3 = r[2]; p4 = r[3]; p5 = r[4]; }
static double rd() { return double.Parse(Console.ReadLine()); }
static double[] rda(int n) {
if(n <= 0) { Console.ReadLine(); return new double[0]; }
else return Console.ReadLine().Trim().Split(' ').Select(double.Parse).ToArray();
}
static void rdo(out double p1) { p1 = rd(); }
static void rdo(out double p1, out double p2) { var r = rda(2); p1 = r[0]; p2 = r[1]; }
static void rdo(out double p1, out double p2, out double p3) { var r = rda(3); p1 = r[0]; p2 = r[1]; p3 = r[2]; }
static void rdo(out double p1, out double p2, out double p3, out double p4) { var r = rda(4); p1 = r[0]; p2 = r[1]; p3 = r[2]; p4 = r[3]; }
static void rdo(out double p1, out double p2, out double p3, out double p4, out double p5) { var r = rda(5); p1 = r[0]; p2 = r[1]; p3 = r[2]; p4 = r[3]; p5 = r[4]; }
static void swap<T>(ref T x, ref T y) { T temp = x; x = y; y = temp; }
static void wa1<T>(T[] a) { Debug.WriteLine(string.Join(" ", a)); }
static void wa2<T>(T[][] a) {
foreach(var row in a) {
Debug.WriteLine(String.Join(" ", row));
}
}
[DebuggerDisplay("{x} , {y}")]
class point<T> {
public T x, y;
public point(T x, T y) {
this.x = x; this.y = y;
}
}
#endregion
}
namespace Algorithm {
using T = System.Int64;
static class Matrix {
static T MOD = (T)1e9 + 7;
public static T[,] mul(T[,] a, T[,] b) {
int n = a.GetLength(0), m = b.GetLength(1), l = a.GetLength(1);
T[,] c = new T[n, m];
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
for(int k = 0; k < l; k++) {
c[i, j] = (c[i, j] + (a[i, k] * b[k, j]) % MOD) % MOD;
}
}
}
return c;
}
public static T[,] Pow(T[,] a, long n) {
int dim = a.GetLength(0);
var b = new T[dim, dim];
for(int i = 0; i < dim; i++) b[i, i] = 1;
while(n > 0) {
if((n & 1) > 0) b = mul(a, b);
a = mul(a, a);
n >>= 1;
}
return b;
}
}
}
static class Extention {
public static T[][] ToJagArray<T>(this T[,] a) {
int n = a.GetLength(0), m = a.GetLength(1);
var ret = new T[n][];
for(int i = 0; i < n; i++) {
ret[i] = new T[m];
for(int j = 0; j < m; j++) {
ret[i][j] = a[i, j];
}
}
return ret;
}
public static bool InRange<T>(this T[,] a, int i, int j) {
int n = a.GetLength(0), m = a.GetLength(1);
return 0 <= i && i < n && 0 <= j && j < m;
}
}
femto