結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | tottoripaper |
提出日時 | 2015-04-26 23:58:24 |
言語 | C++11 (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 43 ms / 5,000 ms |
コード長 | 2,922 bytes |
コンパイル時間 | 372 ms |
コンパイル使用メモリ | 51,820 KB |
実行使用メモリ | 9,388 KB |
最終ジャッジ日時 | 2024-07-05 03:05:12 |
合計ジャッジ時間 | 1,961 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 37 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:123:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 123 | scanf("%lld %lld", &N, &K); | ~~~~~^~~~~~~~~~~~~~~~~~~~~ main.cpp:126:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 126 | scanf("%lld", A+i); | ~~~~~^~~~~~~~~~~~~
ソースコード
// Wrongri-La Shower#include <cstdio>#include <string>#include <tuple>typedef long long ll;typedef std::tuple<ll,ll> P;struct Matrix{Matrix(){for(int i=0;i<=60;i++){for(int j=0;j<=60;j++){element[i][j] = 0;}}}ll element[61][61];};const ll MOD = 1000000000ll + 7;ll N, K;ll A[10001], B[1000001];P solve(){ll sum = 0ll, sum2 = 0ll;for(int i=1;i<=K;i++){if(i <= N){B[i] = A[i];sum = (sum + B[i]) % MOD;}else{B[i] = sum;sum = (sum + B[i] + (-B[i-N] % MOD + MOD) % MOD) % MOD;}sum2 = (sum2 + B[i]) % MOD;}return std::make_tuple(B[K], sum2);}Matrix multiply(const Matrix &matrix, const Matrix &matrix2, int n){Matrix mat;for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){mat.element[i][j] = 0ll;}}for(int i=1;i<=n;i++){for(int k=1;k<=n;k++){for(int j=1;j<=n;j++){mat.element[i][j] = (mat.element[i][j] + matrix.element[i][k] * matrix2.element[k][j] % MOD) % MOD;}}}return mat;}P solve2(){if(K <= N){ll sum = 0ll;for(int i=1;i<=K;i++){sum = (sum + A[i]) % MOD;}return std::make_tuple(A[K] % MOD, sum);}Matrix matrix, matrix2, matrix3;for(int i=1;i<=N;i++){for(int j=1;j<=N;j++){if(i == 1){matrix.element[i][j] = 1;}else if(j+1 == i){matrix.element[i][j] = 1;}}matrix.element[i+N][i] = 1;matrix.element[i+N][i+N] = 1;}for(int i=1;i<=2*N;i++){matrix2.element[i][i] = 1;}matrix3 = matrix;ll k = K-1;while(k > 0){if(k & 1){matrix2 = multiply(matrix2, matrix, 2*N);}k >>= 1;matrix = multiply(matrix, matrix, 2*N);}// for(int i=1;i<=N;i++){// for(int j=1;j<=N;j++){// printf("%lld%c", matrix2.element[i][j], ",\n"[j==N]);// }// }// puts(std::string(40, '-').c_str());ll value = 0ll, sum = 0ll;for(int i=1;i<=N;i++){value = (value + matrix2.element[N][i] * A[N-i+1] % MOD) % MOD;}matrix2 = multiply(matrix2, matrix3, 2*N);for(int i=1;i<=N;i++){sum = (sum + matrix2.element[2*N][i] * A[N-i+1] % MOD) % MOD;}// for(int i=1;i<=N;i++){// res = (res + matrix2.element[1][i] * A[N-i+1] % MOD) % MOD;// }return std::make_tuple(value, sum);}int main(){scanf("%lld %lld", &N, &K);for(int i=1;i<=N;i++){scanf("%lld", A+i);}ll x, y;if(K <= 1000000){std::tie(x, y) = solve();}else{std::tie(x, y) = solve2();}printf("%lld %lld\n", x, y);}