結果
| 問題 |
No.529 帰省ラッシュ
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2017-12-31 03:16:22 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 10,932 bytes |
| コンパイル時間 | 2,937 ms |
| コンパイル使用メモリ | 229,580 KB |
| 最終ジャッジ日時 | 2025-01-05 06:46:31 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 8 RE * 7 TLE * 3 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<int, int>;
template <typename T>
constexpr T INF = numeric_limits<T>::max() / 10;
struct Graph {
Graph(const int v) : V{v}
{
edge.resize(v);
rev_edge.resize(v);
}
void addEdge(const int from, const int to)
{
edge[from].push_back(to);
rev_edge[to].push_back(from);
}
vector<vector<int>> edge;
vector<vector<int>> rev_edge;
const int V;
};
class BiconnectedComponent
{
public:
BiconnectedComponent(const Graph& g_) : num{0}, comp_num{0}, size{g_.V}, bridge(0), ord(size, -1), low(size, 0), comp(size, -1)
{
for (int i = 0; i < size; i++) {
if (ord[i] == -1) {
bridge_dfs(g_, i);
}
}
for (int i = 0; i < size; i++) {
if (comp[i] >= 0) {
continue;
}
comp_dfs(g_, i, comp_num);
comp_num++;
}
}
Graph toTree() const
{
Graph tree(comp_num);
for (const auto& p : bridge) {
tree.addEdge(comp[p.first], comp[p.second]);
tree.addEdge(comp[p.second], comp[p.first]);
}
return tree;
}
const vector<pair<int, int>>& getEdge() const
{
return bridge;
}
bool isBridge(const int i, const int j) const
{
return (ord[i] < ord[j]) ? ord[i] < low[j] : ord[j] < low[i];
}
const vector<int>& getComp() const
{
return comp;
}
const vector<pair<int, int>>& getBridge() const
{
return bridge;
}
private:
void bridge_dfs(const Graph& g_, const int s, const int par = -1)
{
ord[s] = num;
low[s] = num;
num++;
for (const int to : g_.edge[s]) {
if (to == par) {
continue;
}
if (ord[to] >= 0) {
low[s] = min(low[s], ord[to]);
} else {
bridge_dfs(g_, to, s);
low[s] = min(low[s], low[to]);
if (isBridge(s, to)) {
bridge.push_back(make_pair(s, to));
}
}
}
}
void comp_dfs(const Graph& g_, const int s, const int c)
{
comp[s] = c;
for (const int to : g_.edge[s]) {
if ((comp[to] == -1) and (not isBridge(s, to))) {
comp_dfs(g_, to, c);
}
}
}
int num;
int comp_num;
const int size;
vector<pair<int, int>> bridge;
vector<int> ord;
vector<int> low;
vector<int> comp;
};
class HeavyLightDecomposition
{
private:
using P = pair<int, int>;
public:
HeavyLightDecomposition(const Graph& g, const int root = 0) : N(g.V), sub(N, 0), prev(N, -1), next(N, -1), depth(N, 0), head{root}, index(N, {-1, 0}), chains(0)
{
dfs(g, root, 0);
chains.resize(head.size());
for (int i = 0; i < head.size(); i++) {
int pos = head[i];
int v = -1;
for (int ind = 0; pos != -1; ind++) {
v = pos;
chains[i].push_back(pos);
index[pos] = {i, ind};
pos = next[pos];
}
tail.push_back(v);
}
}
P getIndex(const int v) const
{
return index[v];
}
int getChainIndex(const int v) const
{
return index[v].first;
}
int getPosition(const int v) const
{
return index[v].second;
}
int getHead(const int v) const
{
return head[index[v].first];
}
int getTail(const int v) const
{
return tail[index[v].first];
}
const vector<int>& getDepth() const
{
return depth;
}
int prevChainNode(const int v) const
{
return prev[getHead(v)];
}
P prevChainIndex(const int v) const
{
return getIndex(prevChainNode(v));
}
int getLCA(int u, int v) const
{
while (getChainIndex(u) != getChainIndex(v)) {
if (depth[getHead(u)] > depth[getHead(v)]) {
u = prevChainNode(u);
} else {
v = prevChainNode(v);
}
}
return depth[u] < depth[v] ? u : v;
}
const vector<vector<int>>& getChains() const
{
return chains;
}
int prevChain(const int v) const
{
return prev[head[index[v].first]];
}
const int N;
private:
int dfs(const Graph& g, const int s, const int d)
{
sub[s] = 1;
depth[s] = d;
vector<P> child;
for (const int to : g.edge[s]) {
if (sub[to] == 0) {
prev[to] = s;
const int s = dfs(g, to, d + 1);
sub[s] += s;
child.push_back({s, to});
}
}
sort(child.begin(), child.end(), greater<P>{});
if (child.size()) {
next[s] = child[0].second;
for (int i = 1; i < child.size(); i++) {
head.push_back(child[i].second);
}
}
return sub[s];
}
vector<int> sub;
vector<int> prev;
vector<int> next;
vector<int> tail;
vector<int> depth;
vector<int> head;
vector<P> index;
vector<vector<int>> chains;
};
template <typename Monoid>
class FenwickTree
{
public:
using BaseMonoid = Monoid;
using T = typename Monoid::T;
FenwickTree(const int n) : data_num(n), size(1 << (1 + __lg(2 * data_num - 1))), half(size >> 1), value(size, Monoid::identity()) { assert(n > 0); }
FenwickTree(const std::vector<T>& val) : data_num(val.size()), size(1 << (1 + __lg(2 * data_num - 1))), half(size >> 1), value(size)
{
for (int data = 0; data < half; data++) {
if (data < data_num) {
value[data + half] = val[data];
} else {
value[data + half] = Monoid::identity();
}
}
for (int node = half - 1; node >= 1; node--) {
value[node] = acc(value[2 * node], value[2 * node + 1]);
}
}
T get(const int a) const
{
assert(0 <= a and a < data_num);
return accumulate(a, a + 1);
}
void set(const int a, const T& val)
{
assert(0 <= a and a < data_num);
const int node = a + half;
value[node] = val;
for (int i = node / 2; i > 0; i /= 2) {
value[i] = acc(value[2 * i], value[2 * i + 1]);
}
}
T accumulate(const int a, const int b) const // Accumulate (a,b]
{
assert(0 <= a and a < b and b <= data_num);
return accumulateRec(1, 0, half, a, b);
}
int query(const int a, const int b) const // query (a,b]
{
assert(0 <= a and a < b and b <= data_num);
return queryRec(1, 0, half, a, b);
}
private:
T accumulateRec(const int range_index, const int range_left, const int range_right, const int op_left, const int op_right) const
{
if (op_left <= range_left and range_right <= op_right) {
return value[range_index];
} else if (range_right <= op_left or op_right <= range_left) {
return Monoid::identity();
} else {
return acc(accumulateRec(2 * range_index, range_left, (range_left + range_right) / 2, op_left, op_right),
accumulateRec(2 * range_index + 1, (range_left + range_right) / 2, range_right, op_left, op_right));
}
}
int queryRec(const int range_index, const int range_left, const int range_right, const int op_left, const int op_right) const
{
if (op_left <= range_left and range_right <= op_right) {
return value[range_index];
} else if (range_right <= op_left or op_right <= range_left) {
return Monoid::identity();
} else {
return queryRec(2 * range_index, range_left, (range_left + range_right) / 2, op_left, op_right) + queryRec(2 * range_index + 1, (range_left + range_right) / 2, range_right, op_left, op_right);
}
}
const int data_num; // Num of valid data on leaves.
const int size;
const int half;
vector<T> value; // Tree for value(length: size)
const Monoid acc{};
};
struct Max {
using T = pair<ll, int>;
T operator()(const T& a, const T& b) const { return max(a, b); }
static constexpr T identity() { return make_pair(-INF<ll>, -1); }
};
int main()
{
cin.tie(0);
ios::sync_with_stdio(false);
int N, M, Q;
cin >> N >> M >> Q;
Graph g_(N);
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a--, b--;
g_.addEdge(a, b);
g_.addEdge(b, a);
}
BiconnectedComponent bic(g_);
const int comp = bic.getComp().size();
auto g = bic.toTree();
vector<priority_queue<ll>> value(comp);
HeavyLightDecomposition hld(g);
vector<FenwickTree<Max>> segs;
for (const auto& chain : hld.getChains()) {
vector<pair<ll, int>> v(chain.size());
for (int i = 0; i < chain.size(); i++) {
v[i] = {-1, i};
}
segs.push_back(FenwickTree<Max>{v});
}
for (int q = 0; q < Q; q++) {
int t;
cin >> t;
if (t == 1) {
int u;
ll v;
cin >> u >> v;
u--;
const int comp = bic.getComp()[u];
value[comp].push(v);
const P chind = hld.getIndex(comp);
segs[chind.first].set(chind.second, {value[comp].top(), chind.second});
} else {
int s, t;
cin >> s >> t;
s--, t--;
s = bic.getComp()[s];
t = bic.getComp()[t];
const int lca = hld.getLCA(s, t);
const P lca_ch = hld.getIndex(lca);
int pos[2] = {s, t};
pair<ll, int> ans{-1, -1};
int maxchain = -1;
for (int i = 0; i < 2; i++) {
while (true) {
const P index = hld.getIndex(pos[i]);
const int head = (lca_ch.first == index.first ? lca_ch.second : 0);
const auto val = segs[index.first].accumulate(head, index.second + 1);
if (ans < val) {
ans = val;
maxchain = index.first;
}
if (lca_ch.first == index.first) {
break;
}
pos[i] = hld.prevChainNode(pos[i]);
}
}
if (ans.first > 0) {
const int node = hld.getChains()[maxchain][ans.second];
value[node].pop();
const ll val = (value[node].empty() ? -1 : value[node].top());
segs[maxchain].set(ans.second, make_pair(val, ans.second));
}
cout << ans.first << endl;
}
}
return 0;
}