結果
| 問題 |
No.194 フィボナッチ数列の理解(1)
|
| コンテスト | |
| ユーザー |
eitaho
|
| 提出日時 | 2015-04-27 16:17:44 |
| 言語 | C#(csc) (csc 3.9.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 4,253 bytes |
| コンパイル時間 | 1,161 ms |
| コンパイル使用メモリ | 110,080 KB |
| 実行使用メモリ | 27,264 KB |
| 最終ジャッジ日時 | 2024-07-05 04:53:43 |
| 合計ジャッジ時間 | 4,249 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 34 RE * 3 |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System;
using System.IO;
using System.Linq;
using System.Text;
using System.Collections.Generic;
using System.Diagnostics;
using System.Numerics;
using Enu = System.Linq.Enumerable;
class Program
{
static readonly int SmallN = (int)1e6;
static readonly int Mod = (int)1e9 + 7;
public void Solve()
{
int L = Reader.Int();
long N = Reader.Long();
var F = new[] { 0 }.Concat(Reader.IntArray(L)).Concat(new int[SmallN]).ToArray();
var S = new int[SmallN];
for (int i = 1; i <= L; i++) S[i] = (F[i] + S[i - 1]) % Mod;
if (N <= SmallN)
{
for (int i = L + 1; i <= N; i++)
{
F[i] = (S[i - 1] - S[i - L - 1] + Mod) % Mod;
S[i] = (F[i] + S[i - 1]) % Mod;
}
Console.WriteLine(F[N] + " " + S[N]);
}
else
{
var M = new long[L][];
for (int r = 0; r < L; r++) M[r] = new long[L];
for (int c = 0; c < L; c++) M[0][c] = 1;
for (int r = 1; r < L; r++) M[r][r - 1] = 1;
M = MatrixModPower(M, N - L, Mod);
long f = 0;
for (int i = 0; i < L; i++) f = (f + M[0][i] * F[L - i]) % Mod;
M = new long[L + 1][];
for (int r = 0; r < M.Length; r++) M[r] = new long[L + 1];
M[0][0] = 2; M[0][L] = Mod - 1;
for (int r = 1; r < M.Length; r++) M[r][r - 1] = 1;
M = MatrixModPower(M, N - L, Mod);
long s = 0;
for (int i = 0; i < M.Length; i++) s = (s + M[0][i] * S[L - i]) % Mod;
Console.WriteLine(f + " " + s);
}
}
static long[][] MatrixModPower(long[][] A, long n, long mod)
{
int size = A.Length;
long[][] res = new long[size][];
for (int i = 0; i < size; i++) { res[i] = new long[size]; res[i][i] = 1; }
while (n > 0)
{
if ((n & 1) == 1) res = MatrixModMult(res, A, mod);
A = MatrixModMult(A, A, mod);
n >>= 1;
}
return res;
}
static long[][] MatrixModMult(long[][] A, long[][] B, long mod)
{
long[][] res = new long[A.Length][];
for (int i = 0; i < res.Length; i++) res[i] = new long[B[0].Length];
for (int i = 0; i < A.Length; i++)
for (int j = 0; j < B[0].Length; j++)
for (int k = 0; k < A[0].Length; k++)
res[i][j] = (res[i][j] + A[i][k] * B[k][j]) % mod;
return res;
}
}
class Entry { static void Main() { new Program().Solve(); } }
class Reader
{
private static TextReader reader = Console.In;
private static readonly char[] separator = { ' ' };
private static readonly StringSplitOptions op = StringSplitOptions.RemoveEmptyEntries;
private static string[] A = new string[0];
private static int i;
private static void Init() { A = new string[0]; }
public static void Set(TextReader r) { reader = r; Init(); }
public static void Set(string file) { reader = new StreamReader(file); Init(); }
public static bool HasNext() { return CheckNext(); }
public static string String() { return Next(); }
public static int Int() { return int.Parse(Next()); }
public static long Long() { return long.Parse(Next()); }
public static double Double() { return double.Parse(Next()); }
public static int[] IntLine() { return Array.ConvertAll(Split(Line()), int.Parse); }
public static int[] IntArray(int N) { return Enu.Range(0, N).Select(i => Int()).ToArray(); }
public static int[][] IntTable(int H) { return Enu.Range(0, H).Select(i => IntLine()).ToArray(); }
public static string[] StringArray(int N) { return Enu.Range(0, N).Select(i => Line()).ToArray(); }
public static string Line() { return reader.ReadLine().Trim(); }
private static string[] Split(string s) { return s.Split(separator, op); }
private static string Next() { CheckNext(); return A[i++]; }
private static bool CheckNext()
{
if (i < A.Length) return true;
string line = reader.ReadLine();
if (line == null) return false;
if (line == "") return CheckNext();
A = Split(line);
i = 0;
return true;
}
}
eitaho