結果
問題 | No.74 貯金箱の退屈 |
ユーザー | mai |
提出日時 | 2018-01-21 18:10:18 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3 ms / 5,000 ms |
コード長 | 6,760 bytes |
コンパイル時間 | 3,617 ms |
コンパイル使用メモリ | 220,216 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-07 15:22:45 |
合計ジャッジ時間 | 3,964 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 1 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 1 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 3 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 3 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
ソースコード
#pragma GCC optimize ("O3") #pragma GCC target ("avx") #include "bits/stdc++.h" // define macro "/D__MAI" using namespace std; typedef long long int ll; #define debugv(v) {printf("L%d %s > ",__LINE__,#v);for(auto e:v){cout<<e<<" ";}cout<<endl;} #define debuga(m,w) {printf("L%d %s > ",__LINE__,#m);for(int x=0;x<(w);x++){cout<<(m)[x]<<" ";}cout<<endl;} #define debugaa(m,h,w) {printf("L%d %s >\n",__LINE__,#m);for(int y=0;y<(h);y++){for(int x=0;x<(w);x++){cout<<(m)[y][x]<<" ";}cout<<endl;}} #define ALL(v) (v).begin(),(v).end() #define repeat(cnt,l) for(auto cnt=0ll;(cnt)<(l);++(cnt)) #define rrepeat(cnt,l) for(auto cnt=(l)-1;0<=(cnt);--(cnt)) #define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt)) #define MD 1000000007ll #define PI 3.1415926535897932384626433832795 template<typename T1, typename T2> ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << "(" << p.first << ":" << p.second << ")"; return o; } template<typename T> T& maxset(T& to, const T& val) { return to = max(to, val); } template<typename T> T& minset(T& to, const T& val) { return to = min(to, val); } void bye(string s, int code = 0) { cout << s << endl; exit(code); } mt19937_64 randdev(8901016); inline ll rand_range(ll l, ll h) { return uniform_int_distribution<ll>(l, h)(randdev); } #if defined(_WIN32) || defined(_WIN64) #define getchar_unlocked _getchar_nolock #define putchar_unlocked _putchar_nolock #elif defined(__GNUC__) #else #define getchar_unlocked getchar #define putchar_unlocked putchar #endif namespace { #define isvisiblechar(c) (0x21<=(c)&&(c)<=0x7E) class MaiScanner { public: template<typename T> void input_integer(T& var) { var = 0; T sign = 1; int cc = getchar_unlocked(); for (; cc<'0' || '9'<cc; cc = getchar_unlocked()) if (cc == '-') sign = -1; for (; '0' <= cc && cc <= '9'; cc = getchar_unlocked()) var = (var << 3) + (var << 1) + cc - '0'; var = var * sign; } inline int c() { return getchar_unlocked(); } inline MaiScanner& operator>>(int& var) { input_integer<int>(var); return *this; } inline MaiScanner& operator>>(long long& var) { input_integer<long long>(var); return *this; } inline MaiScanner& operator>>(string& var) { int cc = getchar_unlocked(); for (; !isvisiblechar(cc); cc = getchar_unlocked()); for (; isvisiblechar(cc); cc = getchar_unlocked()) var.push_back(cc); return *this; } template<typename IT> void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; } }; class MaiPrinter { public: template<typename T> void output_integer(T var) { if (var == 0) { putchar_unlocked('0'); return; } if (var < 0) putchar_unlocked('-'), var = -var; char stack[32]; int stack_p = 0; while (var) stack[stack_p++] = '0' + (var % 10), var /= 10; while (stack_p) putchar_unlocked(stack[--stack_p]); } inline MaiPrinter& operator<<(char c) { putchar_unlocked(c); return *this; } inline MaiPrinter& operator<<(int var) { output_integer<int>(var); return *this; } inline MaiPrinter& operator<<(long long var) { output_integer<long long>(var); return *this; } inline MaiPrinter& operator<<(char* str_p) { while (*str_p) putchar_unlocked(*(str_p++)); return *this; } inline MaiPrinter& operator<<(const string& str) { const char* p = str.c_str(); const char* l = p + str.size(); while (p < l) putchar_unlocked(*p++); return *this; } template<typename IT> void join(IT begin, IT end, char sep = '\n') { for (auto it = begin; it != end; ++it) *this << *it << sep; } }; } MaiScanner scanner; MaiPrinter printer; /* 入力をうまく変換すると, コインの状態vector<boolean>と,操作の集合set<pair<int,int>>が与えられる. 操作(x,y)を実行すると,x番目のコインとy番目のコインを反転させる.(x==yなら,x番目のコインのみを反転させる) 全て表向きにできるか? コインを頂点,操作を辺と置き換えることができる.すると, 幾つかの辺を選んで,ww[i]=0の時は奇頂点,ww[i]=1の時は偶頂点となるようにしたい. 条件を満たす辺の選び方は存在するか? 一筆書きの話に非常によく似ている 両端点がww[i]==0,他がww[i]!=0となるようなパスが存在するならば,連続でそのパスを選択することで,パスが通る頂点は条件を満たす. */ class Graph2d { public: typedef int W_T; size_t n; vector<W_T> matrix; Graph2d(size_t size) :n(size), matrix(size*size) {}; void resize(size_t s) { n = s; matrix.resize(n*n); } void resize(size_t s, W_T val) { n = s; matrix.resize(n*n, val); } inline W_T& at(int y, int x) { return matrix[y*n + x]; } inline W_T& operator()(int y, int x) { return matrix[y*n + x]; } inline W_T at(int y, int x) const { return matrix[y*n + x]; } inline W_T operator()(int y, int x) const { return matrix[y*n + x]; } inline void connect(int u, int v, W_T dist = 1) { at(u, v) = at(v, u) = dist; } inline void connect_d(int from, int to, W_T dist = 1) { // directedEdge u->v at(from, to) = dist; } }; void warshall_floyd(Graph2d& g) { int i, j, k; for (i = 0; i < g.n; i++) { for (j = 0; j < g.n; j++) { for (k = 0; k < g.n; k++) { g(j, k) = min(g(j, k), g(j, i) + g(i, k)); } } } } ll m, n, kei; int dd[111]; int ww[111]; vector<int> flip_from[111]; // iを反転すると, const int inf = 1e9; int main() { scanner >> n; scanner.in(dd, dd + n); scanner.in(ww, ww + n); Graph2d graph(n); fill(ALL(graph.matrix), inf); repeat(i, n) { dd[i] %= n; int x = (i + dd[i]) % n; int y = (i - dd[i] + n) % n; if (x == y) { ww[x] = -1; } else { graph.connect(x, y); } } warshall_floyd(graph); repeat(i, n) { if (ww[i] != 0) continue; iterate(j, 0, n) { if (i == j) continue; if (ww[j] == 1) continue; if (graph(i, j) < inf) { if (ww[j] == 0) ww[j] = 1; ww[i] = 1; break; } } if (ww[i] == 0) bye("No"); } bye("Yes"); return 0; }