結果
問題 | No.200 カードファイト! |
ユーザー | 夕叢霧香(ゆうむらきりか) |
提出日時 | 2018-01-22 17:32:39 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 7 ms / 2,000 ms |
コード長 | 5,987 bytes |
コンパイル時間 | 1,193 ms |
コンパイル使用メモリ | 99,496 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-15 09:00:50 |
合計ジャッジ時間 | 2,125 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
6,820 KB |
testcase_01 | AC | 4 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 3 ms
6,816 KB |
testcase_06 | AC | 3 ms
6,816 KB |
testcase_07 | AC | 4 ms
6,816 KB |
testcase_08 | AC | 3 ms
6,820 KB |
testcase_09 | AC | 3 ms
6,816 KB |
testcase_10 | AC | 3 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | AC | 2 ms
6,820 KB |
testcase_15 | AC | 2 ms
6,816 KB |
testcase_16 | AC | 2 ms
6,816 KB |
testcase_17 | AC | 1 ms
6,820 KB |
testcase_18 | AC | 2 ms
6,820 KB |
testcase_19 | AC | 2 ms
6,820 KB |
testcase_20 | AC | 3 ms
6,820 KB |
testcase_21 | AC | 2 ms
6,816 KB |
testcase_22 | AC | 2 ms
6,820 KB |
testcase_23 | AC | 2 ms
6,816 KB |
testcase_24 | AC | 2 ms
6,820 KB |
testcase_25 | AC | 2 ms
6,816 KB |
testcase_26 | AC | 1 ms
6,820 KB |
testcase_27 | AC | 2 ms
6,820 KB |
testcase_28 | AC | 7 ms
6,820 KB |
コンパイルメッセージ
main.cpp: In member function 'void MinCostFlow::add_edge(int, int, int, int)': main.cpp:141:64: warning: narrowing conversion of '(&((MinCostFlow*)this)->MinCostFlow::graph.std::vector<std::vector<MinCostFlow::edge> >::operator[](((std::vector<std::vector<MinCostFlow::edge> >::size_type)to)))->std::vector<MinCostFlow::edge>::size()' from 'std::vector<MinCostFlow::edge>::size_type' {aka 'long unsigned int'} to 'int' [-Wnarrowing] 141 | graph[from].push_back((edge) {to, cap, cost, graph[to].size()}); | ~~~~~~~~~~~~~~^~ main.cpp:142:68: warning: narrowing conversion of '((&((MinCostFlow*)this)->MinCostFlow::graph.std::vector<std::vector<MinCostFlow::edge> >::operator[](((std::vector<std::vector<MinCostFlow::edge> >::size_type)from)))->std::vector<MinCostFlow::edge>::size() - 1)' from 'std::vector<MinCostFlow::edge>::size_type' {aka 'long unsigned int'} to 'int' [-Wnarrowing] 142 | graph[to].push_back((edge) {from, 0, -cost, graph[from].size() - 1}); | ~~~~~~~~~~~~~~~~~~~^~~
ソースコード
#include<algorithm> #include<iostream> #include<queue> #include<vector> using namespace std; typedef long long lint; typedef vector<int>vi; typedef pair<int,int>pii; #define rep(i,n)for(int i=0;i<(int)(n);++i) // https://github.com/koba-e964/contest/blob/master/comm/dinic.cpp /** * Dinic's algorithm for maximum flow problem. * Header requirement: vector, queue * Verified by: ABC010-D(http://abc010.contest.atcoder.jp/submissions/602810) * ARC031-D(http://arc031.contest.atcoder.jp/submissions/1050071) * POJ 3155(http://poj.org/problem?id=3155) */ template<class T = int> class Dinic { private: struct edge { int to; T cap; int rev; // rev is the position of reverse edge in graph[to] }; std::vector<std::vector<edge> > graph; std::vector<int> level; std::vector<int> iter; /* Perform bfs and calculate distance from s */ void bfs(int s) { level.assign(level.size(), -1); std::queue<int> que; level[s] = 0; que.push(s); while (! que.empty()) { int v = que.front(); que.pop(); for (int i = 0; i < graph[v].size(); ++i) { edge &e = graph[v][i]; if (e.cap > 0 && level[e.to] == -1) { level[e.to] = level[v] + 1; que.push(e.to); } } } } /* search augment path by dfs. if f == -1, f is treated as infinity. */ T dfs(int v, int t, T f) { if (v == t) { return f; } for (int &i = iter[v]; i < graph[v].size(); ++i) { edge &e = graph[v][i]; if (e.cap > 0 && level[v] < level[e.to]) { T newf = f == -1 ? e.cap : std::min(f, e.cap); T d = dfs(e.to, t, newf); if (d > 0) { e.cap -= d; graph[e.to][e.rev].cap += d; return d; } } } return 0; } public: /* v is the number of vertices (labeled from 0 .. v-1) */ Dinic(int v) : graph(v), level(v, -1), iter(v, 0) {} void add_edge(int from, int to, T cap) { graph[from].push_back((edge) {to, cap, graph[to].size()}); graph[to].push_back((edge) {from, 0, graph[from].size() - 1}); } T max_flow(int s, int t) { T flow = 0; while (1) { bfs(s); if (level[t] < 0) { return flow; } iter.assign(iter.size(), 0); T f; while ((f = dfs(s, t, -1)) > 0) { flow += f; } } } std::pair<T,std::vector<int> > max_flow_cut(int s, int t) { T flow = 0; while (1) { bfs(s); if (level[t] < 0) { std::vector<int> ret; for (int i = 0; i < graph.size(); ++i) { if (level[i] < 0) { ret.push_back(i); } } return std::pair<T, std::vector<int> >(flow, ret); } iter.assign(iter.size(), 0); T f; while ((f = dfs(s, t, -1)) > 0) { flow += f; } } } }; // https://github.com/koba-e964/contest/blob/master/comm/MinCostFlow.cpp /* * Requirement of headers: vector, queue * Verified by: POJ 2135 (http://poj.org/problem?id=2135) */ class MinCostFlow { private: struct edge { int to, cap, cost, rev; // rev is the position of reverse edge in graph[to] }; typedef std::pair<int, int> P; int v; // the number of vertices std::vector<std::vector<edge> > graph; std::vector<int> h; // potential std::vector<int> dist; // minimum distance std::vector<int> prevv, preve; // previous vertex and edge public: /* Initializes this solver. v is the number of vertices. */ MinCostFlow(int v) : v(v), graph(v), h(v), dist(v), prevv(v), preve(v) {} /* Initializes this solver with a existing instance. Only graph is copied. */ MinCostFlow(const MinCostFlow &ano) : v(ano.v), graph(), h(ano.v), dist(ano.v), prevv(ano.v), preve(ano.v) { for (int i = 0; i < ano.v; ++i) { std::vector<edge> tt; for (int j = 0; j < ano.graph[i].size(); ++j) { tt.push_back(ano.graph[i][j]); } graph.push_back(tt); } } /* Adds an edge. */ void add_edge(int from, int to, int cap, int cost) { graph[from].push_back((edge) {to, cap, cost, graph[to].size()}); graph[to].push_back((edge) {from, 0, -cost, graph[from].size() - 1}); } /* Calcucates the minimum cost flow whose source is s, sink is t, and flow is f. */ int min_cost_flow(int s, int t, int f) { const int inf = 0x3fffffff; int res = 0; std::fill(h.begin(), h.end(), 0); while (f > 0) { std::priority_queue<P, std::vector<P>, std::greater<P> > que; std::fill(dist.begin(), dist.end(), inf); dist[s] = 0; que.push(P(0, s)); while (! que.empty()) { P p(que.top()); que.pop(); int v = p.second; if (dist[v] < p.first) { continue; } for (int i = 0; i < graph[v].size(); ++i) { edge &e = graph[v][i]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; prevv[e.to] = v; preve[e.to] = i; que.push(P(dist[e.to], e.to)); } } } if (dist[t] == inf) { return -1; // Cannot add flow anymore } for (int i = 0; i < v; ++i) { h[i] += dist[i]; } // Add flow fully int d = f; for (int i = t; i != s; i = prevv[i]) { d = std::min(d, graph[prevv[i]][preve[i]].cap); } f -= d; res += d * h[t]; for (int i = t; i != s; i = prevv[i]) { edge &e = graph[prevv[i]][preve[i]]; e.cap -= d; graph[i][e.rev].cap += d; } } // while (f > 0) return res; } }; int main(){ int n,a,c; cin>>n>>a; vi b(a); rep(i,a)cin>>b[i]; rep(i,a)b[i]--; cin>>c; vi d(c); rep(i,c)cin>>d[i]; rep(i,c)d[i]--; sort(b.rbegin(),b.rend()); sort(d.begin(),d.end()); vi tb(n),td(n); for(int i=0;i<n;++i){ tb[i]=b[i%a]; td[i]=d[i%c]; } MinCostFlow mcf(2*n+2); rep(i,n)mcf.add_edge(0,2+i,1,0); rep(i,n)mcf.add_edge(2+n+i,1,1,0); rep(i,n){ rep(j,n){ bool ok=false; for(int k=i/a*a;k<min(n,(i/a+1)*a);++k){ for(int l=j/c*c;l<min(n,(j/c+1)*c);++l){ if(k==l){ ok=true; } } } if(ok){ mcf.add_edge(2+i,2+n+j,1,tb[i]>td[j]?0:1); } } } cout<<n-mcf.min_cost_flow(0,1,n)<<endl; }