結果

問題 No.200 カードファイト!
ユーザー 夕叢霧香(ゆうむらきりか)夕叢霧香(ゆうむらきりか)
提出日時 2018-01-22 17:32:39
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 34 ms / 2,000 ms
コード長 5,987 bytes
コンパイル時間 1,369 ms
コンパイル使用メモリ 96,396 KB
最終ジャッジ日時 2025-01-05 07:46:48
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 4 ms
6,816 KB
testcase_01 AC 4 ms
6,816 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,824 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 4 ms
6,820 KB
testcase_06 AC 3 ms
6,816 KB
testcase_07 AC 5 ms
6,820 KB
testcase_08 AC 3 ms
6,820 KB
testcase_09 AC 3 ms
6,820 KB
testcase_10 AC 3 ms
6,820 KB
testcase_11 AC 2 ms
6,816 KB
testcase_12 AC 2 ms
6,820 KB
testcase_13 AC 2 ms
6,824 KB
testcase_14 AC 2 ms
6,824 KB
testcase_15 AC 2 ms
6,820 KB
testcase_16 AC 2 ms
6,816 KB
testcase_17 AC 2 ms
6,824 KB
testcase_18 AC 34 ms
6,824 KB
testcase_19 AC 2 ms
6,820 KB
testcase_20 AC 3 ms
6,824 KB
testcase_21 AC 1 ms
6,820 KB
testcase_22 AC 2 ms
6,824 KB
testcase_23 AC 2 ms
6,816 KB
testcase_24 AC 2 ms
6,816 KB
testcase_25 AC 2 ms
6,816 KB
testcase_26 AC 2 ms
6,816 KB
testcase_27 AC 3 ms
6,816 KB
testcase_28 AC 6 ms
6,816 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In member function ‘void MinCostFlow::add_edge(int, int, int, int)’:
main.cpp:141:64: warning: narrowing conversion of ‘(&((MinCostFlow*)this)->MinCostFlow::graph.std::vector<std::vector<MinCostFlow::edge> >::operator[](((std::vector<std::vector<MinCostFlow::edge> >::size_type)to)))->std::vector<MinCostFlow::edge>::size()’ from ‘std::vector<MinCostFlow::edge>::size_type’ {aka ‘long unsigned int’} to ‘int’ [-Wnarrowing]
  141 |     graph[from].push_back((edge) {to, cap, cost, graph[to].size()});
      |                                                  ~~~~~~~~~~~~~~^~
main.cpp:142:68: warning: narrowing conversion of ‘((&((MinCostFlow*)this)->MinCostFlow::graph.std::vector<std::vector<MinCostFlow::edge> >::operator[](((std::vector<std::vector<MinCostFlow::edge> >::size_type)from)))->std::vector<MinCostFlow::edge>::size() - 1)’ from ‘std::vector<MinCostFlow::edge>::size_type’ {aka ‘long unsigned int’} to ‘int’ [-Wnarrowing]
  142 |     graph[to].push_back((edge) {from, 0, -cost, graph[from].size() - 1});
      |                                                 ~~~~~~~~~~~~~~~~~~~^~~

ソースコード

diff #

#include<algorithm>
#include<iostream>
#include<queue>
#include<vector>
using namespace std;
typedef long long lint;
typedef vector<int>vi;
typedef pair<int,int>pii;
#define rep(i,n)for(int i=0;i<(int)(n);++i)

// https://github.com/koba-e964/contest/blob/master/comm/dinic.cpp
/**
 * Dinic's algorithm for maximum flow problem.
 * Header requirement: vector, queue
 * Verified by: ABC010-D(http://abc010.contest.atcoder.jp/submissions/602810)
 *              ARC031-D(http://arc031.contest.atcoder.jp/submissions/1050071)
 *              POJ 3155(http://poj.org/problem?id=3155)
 */
template<class T = int>
class Dinic {
private:
  struct edge {
    int to;
    T cap;
    int rev; // rev is the position of reverse edge in graph[to]
  };
  std::vector<std::vector<edge> > graph;
  std::vector<int> level;
  std::vector<int> iter;
  /* Perform bfs and calculate distance from s */
  void bfs(int s) {
    level.assign(level.size(), -1);
    std::queue<int> que;
    level[s] = 0;
    que.push(s);
    while (! que.empty()) {
      int v = que.front(); que.pop();
      for (int i = 0; i < graph[v].size(); ++i) {
	edge &e = graph[v][i];
	if (e.cap > 0 && level[e.to] == -1) {
	  level[e.to] = level[v] + 1;
	  que.push(e.to);
	}
      }
    }
  }
  /* search augment path by dfs.
     if f == -1, f is treated as infinity. */
  T dfs(int v, int t, T f) {
    if (v == t) {
      return f;
    }
    for (int &i = iter[v]; i < graph[v].size(); ++i) {
      edge &e = graph[v][i];
      if (e.cap > 0 && level[v] < level[e.to]) {
	T newf = f == -1 ? e.cap : std::min(f, e.cap);
	T d = dfs(e.to, t, newf);
	if (d > 0) {
	  e.cap -= d;
	  graph[e.to][e.rev].cap += d;
	  return d;
	}
      }
    }
    return 0;
  }
public:
  /* v is the number of vertices (labeled from 0 .. v-1) */
  Dinic(int v) : graph(v), level(v, -1), iter(v, 0) {}
  void add_edge(int from, int to, T cap) {
    graph[from].push_back((edge) {to, cap, graph[to].size()});
    graph[to].push_back((edge) {from, 0, graph[from].size() - 1});
  }
  T max_flow(int s, int t) {
    T flow = 0;
    while (1) {
      bfs(s);
      if (level[t] < 0) {
	return flow;
      }
      iter.assign(iter.size(), 0);
      T f;
      while ((f = dfs(s, t, -1)) > 0) {
	flow += f;
      }
    }
  }
  std::pair<T,std::vector<int> > max_flow_cut(int s, int t) {
    T flow = 0;
    while (1) {
      bfs(s);
      if (level[t] < 0) {
	std::vector<int> ret;
	for (int i = 0; i < graph.size(); ++i) {
	  if (level[i] < 0) {
	    ret.push_back(i);
	  }
	}
	return std::pair<T, std::vector<int> >(flow, ret);
      }
      iter.assign(iter.size(), 0);
      T f;
      while ((f = dfs(s, t, -1)) > 0) {
	flow += f;
      }
    }
  }
};

// https://github.com/koba-e964/contest/blob/master/comm/MinCostFlow.cpp
/*
 * Requirement of headers: vector, queue
 * Verified by: POJ 2135 (http://poj.org/problem?id=2135)
 */
class MinCostFlow {
private:
  struct edge {
    int to, cap, cost, rev; // rev is the position of reverse edge in graph[to]
  };
  typedef std::pair<int, int> P;
  int v; // the number of vertices
  std::vector<std::vector<edge> > graph;
  std::vector<int> h; // potential
  std::vector<int> dist; // minimum distance
  std::vector<int> prevv, preve; // previous vertex and edge
public:
  /* Initializes this solver. v is the number of vertices. */
  MinCostFlow(int v) : v(v), graph(v), h(v), dist(v), prevv(v), preve(v) {}
  /* Initializes this solver with a existing instance. Only graph is copied. */
  MinCostFlow(const MinCostFlow &ano) : v(ano.v), graph(), h(ano.v), dist(ano.v), prevv(ano.v), preve(ano.v) {
    for (int i = 0; i < ano.v; ++i) {
      std::vector<edge> tt;
      for (int j = 0; j < ano.graph[i].size(); ++j) {
	tt.push_back(ano.graph[i][j]);
      }
      graph.push_back(tt);
    }
  }
  /* Adds an edge. */
  void add_edge(int from, int to, int cap, int cost) {
    graph[from].push_back((edge) {to, cap, cost, graph[to].size()});
    graph[to].push_back((edge) {from, 0, -cost, graph[from].size() - 1});
  }
  /* Calcucates the minimum cost flow whose source is s, sink is t, and flow is f. */
  int min_cost_flow(int s, int t, int f) {
    const int inf = 0x3fffffff;
    int res = 0;
    std::fill(h.begin(), h.end(), 0);
    while (f > 0) {
      std::priority_queue<P, std::vector<P>, std::greater<P> > que;
      std::fill(dist.begin(), dist.end(), inf);
      dist[s] = 0;
      que.push(P(0, s));
      while (! que.empty()) {
	P p(que.top()); que.pop();
	int v = p.second;
	if (dist[v] < p.first) {
	  continue;
	}
	for (int i = 0; i < graph[v].size(); ++i) {
	  edge &e = graph[v][i];
	  if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
	    dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
	    prevv[e.to] = v;
	    preve[e.to] = i;
	    que.push(P(dist[e.to], e.to));
	  }
	}
      }
      if (dist[t] == inf) {
	return -1; // Cannot add flow anymore
      }
      for (int i = 0; i < v; ++i) {
	h[i] += dist[i];
      }
      // Add flow fully
      int d = f;
      for (int i = t; i != s; i = prevv[i]) {
	d = std::min(d, graph[prevv[i]][preve[i]].cap);
      }
      f -= d;
      res += d * h[t];
      for (int i = t; i != s; i = prevv[i]) {
	edge &e = graph[prevv[i]][preve[i]];
	e.cap -= d;
	graph[i][e.rev].cap += d;
      }
    } // while (f > 0)
    return res;
  }
};

int main(){
  int n,a,c;
  cin>>n>>a;
  vi b(a);
  rep(i,a)cin>>b[i];
  rep(i,a)b[i]--;
  cin>>c;
  vi d(c);
  rep(i,c)cin>>d[i];
  rep(i,c)d[i]--;
  sort(b.rbegin(),b.rend());
  sort(d.begin(),d.end());
  vi tb(n),td(n);
  for(int i=0;i<n;++i){
    tb[i]=b[i%a];
    td[i]=d[i%c];
  }
  MinCostFlow mcf(2*n+2);
  rep(i,n)mcf.add_edge(0,2+i,1,0);
  rep(i,n)mcf.add_edge(2+n+i,1,1,0);
  rep(i,n){
    rep(j,n){
      bool ok=false;
      for(int k=i/a*a;k<min(n,(i/a+1)*a);++k){
	for(int l=j/c*c;l<min(n,(j/c+1)*c);++l){
	  if(k==l){
	    ok=true;
	  }
	}
      }
      if(ok){
	mcf.add_edge(2+i,2+n+j,1,tb[i]>td[j]?0:1);
      }
    }
  }
  cout<<n-mcf.min_cost_flow(0,1,n)<<endl;
}
0