結果
問題 | No.529 帰省ラッシュ |
ユーザー | te-sh |
提出日時 | 2018-01-29 12:06:12 |
言語 | D (dmd 2.109.1) |
結果 |
AC
|
実行時間 | 661 ms / 4,500 ms |
コード長 | 7,248 bytes |
コンパイル時間 | 1,179 ms |
コンパイル使用メモリ | 139,208 KB |
実行使用メモリ | 80,724 KB |
最終ジャッジ日時 | 2024-06-12 23:41:24 |
合計ジャッジ時間 | 8,433 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,812 KB |
testcase_02 | AC | 1 ms
6,940 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | AC | 7 ms
6,940 KB |
testcase_05 | AC | 6 ms
6,940 KB |
testcase_06 | AC | 6 ms
6,944 KB |
testcase_07 | AC | 6 ms
6,940 KB |
testcase_08 | AC | 384 ms
32,720 KB |
testcase_09 | AC | 386 ms
34,460 KB |
testcase_10 | AC | 499 ms
47,332 KB |
testcase_11 | AC | 506 ms
47,884 KB |
testcase_12 | AC | 291 ms
30,368 KB |
testcase_13 | AC | 557 ms
80,724 KB |
testcase_14 | AC | 342 ms
32,308 KB |
testcase_15 | AC | 661 ms
51,712 KB |
testcase_16 | AC | 657 ms
52,116 KB |
testcase_17 | AC | 478 ms
59,636 KB |
testcase_18 | AC | 486 ms
59,464 KB |
testcase_19 | AC | 485 ms
56,128 KB |
コンパイルメッセージ
Main.d(20): Deprecation: foreach: loop index implicitly converted from `size_t` to `int`
ソースコード
import std.algorithm, std.conv, std.range, std.stdio, std.string; import std.container; // SList, DList, BinaryHeap void readV(T...)(ref T t){auto r=readln.splitter;foreach(ref v;t){v=r.front.to!(typeof(v));r.popFront;}} T[] readArray(T)(size_t n){auto a=new T[](n),r=readln.splitter;foreach(ref v;a){v=r.front.to!T;r.popFront;}return a;} T[] readArrayM(T)(size_t n){auto a=new T[](n);foreach(ref v;a)v=readln.chomp.to!T;return a;} void main() { int n, m, q; readV(n, m, q); auto a = new int[](m), b = new int[](m); foreach (i; 0..m) { readV(a[i], b[i]); --a[i]; --b[i]; } auto g = Graph!int(n); foreach (i; 0..m) g.addEdgeB(a[i], b[i]); auto rbc = biconnectedComponents(g), nt = rbc.bccs.length.to!int; auto tv = new int[](n); foreach (int i, bcc; rbc.bccs) foreach (v; bcc) tv[v] = i; auto gt = Graph!int(nt); foreach (brdg; rbc.brdg) gt.addEdgeB(tv[brdg.u], tv[brdg.v]); auto tr = makeTree(gt).rootify(0).hlDecomposition; tr.makePath(0); auto np = tr.paths.length.to!int; auto bh = new BinaryHeap!(Array!int, "a<b")[](nt); foreach (i; 0..nt) bh[i] = heapify!"a<b"(Array!int()); int[int] wv; auto st = new SegmentTree!(int, max)*[](np); foreach (i; 0..np) st[i] = new SegmentTree!(int, max)(tr.paths[i].length); auto calc(int u, int v) { auto m = 0; while (tr.path[u] != tr.path[v]) { m = max(m, (*st[tr.path[u]])[0..tr.depthInPath(u)+1]); u = tr.parent[tr.head[u]]; } return max(m, (*st[tr.path[u]])[tr.depthInPath(v)..tr.depthInPath(u)+1]); } foreach (_; 0..q) { int c, s, t; readV(c, s, t); switch (c) { case 1: s = tv[s-1]; wv[t] = s; auto cw = (*st[tr.path[s]])[tr.depthInPath(s)]; if (cw > 0) { if (t > cw) { (*st[tr.path[s]])[tr.depthInPath(s)] = t; bh[s].insert(cw); } else { bh[s].insert(t); } } else { (*st[tr.path[s]])[tr.depthInPath(s)] = t; } break; case 2: s = tv[s-1]; t = tv[t-1]; auto lca = tr.lca(s, t), wm = 0; wm = max(calc(s, lca), calc(t, lca)); if (wm > 0) { writeln(wm); auto v = wv[wm]; (*st[tr.path[v]])[tr.depthInPath(v)] = 0; if (!bh[v].empty) { (*st[tr.path[v]])[tr.depthInPath(v)] = bh[v].front; bh[v].removeFront; } } else { writeln(-1); } break; default: assert(0); } } } struct Graph(N = int) { alias Node = N; Node n; Node[][] g; alias g this; this(Node n) { this.n = n; g = new Node[][](n); } void addEdge(Node u, Node v) { g[u] ~= v; } void addEdgeB(Node u, Node v) { g[u] ~= v; g[v] ~= u; } } ref auto biconnectedComponents(Graph)(ref Graph g) { import std.algorithm, std.container, std.typecons; alias Node = g.Node; auto n = g.n, sent = g.n, ord = new Node[](n), inS = new bool[](n); auto roots = SList!Node(), S = SList!Node(); struct Edge { Node u, v; } Edge[] brdg; Node[][] bccs; int k; void visit(Node cur, Node prev) { ord[cur] = ++k; S.insertFront(cur); inS[cur] = true; roots.insertFront(cur); foreach (v; g[cur]) { if (!ord[v]) visit(v, cur); else if (v != prev && inS[v]) while (ord[roots.front] > ord[v]) roots.removeFront(); } if (cur == roots.front) { if (prev != sent) brdg ~= Edge(prev, cur); Node[] bcc; for (;;) { auto node = S.front; S.removeFront(); inS[node] = false; bcc ~= node; if (node == cur) break; } bccs ~= bcc; roots.removeFront(); } } foreach (i; 0..n) if (!ord[i]) visit(i, sent); return tuple!("bccs", "brdg")(bccs, brdg); } struct Tree(Graph) { import std.algorithm, std.container; alias Node = Graph.Node; Graph g; alias g this; Node root; Node[] parent; int[] size, depth; this(ref Graph g) { this.g = g; this.n = g.n; } ref auto rootify(Node r) { this.root = r; parent = new Node[](g.n); depth = new int[](g.n); depth[] = -1; struct UP { Node u, p; } auto st1 = SList!UP(UP(r, r)); auto st2 = SList!UP(); while (!st1.empty) { auto up = st1.front, u = up.u, p = up.p; st1.removeFront(); parent[u] = p; depth[u] = depth[p] + 1; foreach (v; g[u]) if (v != p) { st1.insertFront(UP(v, u)); st2.insertFront(UP(v, u)); } } size = new int[](g.n); size[] = 1; while (!st2.empty) { auto up = st2.front, u = up.u, p = up.p; st2.removeFront(); size[p] += size[u]; } return this; } auto children(Node u) { return g[u].filter!(v => v != parent[u]); } } ref auto makeTree(Graph)(ref Graph g) { return Tree!Graph(g); } struct HlDecomposition(Tree) { import std.container; alias Node = Tree.Node; Tree t; alias t this; Node[] head, path; Node[][] paths; this(ref Tree t) { this.t = t; auto n = t.n; head = new Node[](n); head[] = n; struct US { Node u, s; } auto st = SList!US(US(t.root, t.root)); while (!st.empty) { auto us = st.front, u = us.u, s = us.s; st.removeFront(); head[u] = s; auto z = n; foreach (v; t[u]) if (head[v] == n && (z == n || t.size[z] < t.size[v])) z = v; foreach (v; t[u]) if (head[v] == n) st.insertFront(US(v, v == z ? s : v)); } } auto makePath(Node r) { auto pathIndex = 0; path = new Node[](t.n); auto q = DList!Node(r); while (!q.empty) { auto u = q.front; q.removeFront(); if (u == head[u]) { path[u] = pathIndex++; paths ~= [u]; } else { path[u] = path[head[u]]; paths[path[u]] ~= u; } foreach (v; t[u]) if (v != t.parent[u]) q.insertBack(v); } } auto depthInPath(Node n) { return t.depth[n] - t.depth[head[n]]; } auto lca(Node u, Node v) { while (head[u] != head[v]) if (t.depth[head[u]] < t.depth[head[v]]) v = t.parent[head[v]]; else u = t.parent[head[u]]; return t.depth[u] < t.depth[v] ? u : v; } } ref auto hlDecomposition(Tree)(ref Tree t) { return HlDecomposition!(Tree)(t); } struct SegmentTree(T, alias pred = "a + b") { import core.bitop, std.functional; alias predFun = binaryFun!pred; const size_t n, an; T[] buf; T unit; this(size_t n, T unit = T.init) { this.n = n; this.unit = unit; an = (1 << ((n-1).bsr + 1)); buf = new T[](an*2); if (T.init != unit) buf[] = unit; } this(T[] init, T unit = T.init) { this(init.length, unit); buf[an..an+n][] = init[]; foreach_reverse (i; 1..an) buf[i] = predFun(buf[i*2], buf[i*2+1]); } void opIndexAssign(T val, size_t i) { buf[i += an] = val; while (i /= 2) buf[i] = predFun(buf[i*2], buf[i*2+1]); } pure T opSlice(size_t l, size_t r) { l += an; r += an; T r1 = unit, r2 = unit; while (l != r) { if (l % 2) r1 = predFun(r1, buf[l++]); if (r % 2) r2 = predFun(buf[--r], r2); l /= 2; r /= 2; } return predFun(r1, r2); } pure T opIndex(size_t i) { return buf[i+an]; } pure size_t opDollar() { return n; } }