結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | mai |
提出日時 | 2018-01-31 00:47:31 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 15 ms / 5,000 ms |
コード長 | 10,948 bytes |
コンパイル時間 | 3,436 ms |
コンパイル使用メモリ | 222,976 KB |
実行使用メモリ | 11,156 KB |
最終ジャッジ日時 | 2024-06-09 11:54:35 |
合計ジャッジ時間 | 4,674 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 15 ms
5,376 KB |
testcase_03 | AC | 3 ms
5,376 KB |
testcase_04 | AC | 6 ms
5,376 KB |
testcase_05 | AC | 6 ms
5,376 KB |
testcase_06 | AC | 6 ms
5,376 KB |
testcase_07 | AC | 9 ms
5,376 KB |
testcase_08 | AC | 3 ms
5,376 KB |
testcase_09 | AC | 8 ms
5,376 KB |
testcase_10 | AC | 4 ms
5,376 KB |
testcase_11 | AC | 5 ms
5,376 KB |
testcase_12 | AC | 6 ms
5,376 KB |
testcase_13 | AC | 3 ms
5,376 KB |
testcase_14 | AC | 3 ms
5,376 KB |
testcase_15 | AC | 12 ms
5,376 KB |
testcase_16 | AC | 12 ms
5,376 KB |
testcase_17 | AC | 3 ms
5,376 KB |
testcase_18 | AC | 12 ms
5,376 KB |
testcase_19 | AC | 15 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 9 ms
11,156 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 3 ms
5,376 KB |
testcase_24 | AC | 7 ms
7,012 KB |
testcase_25 | AC | 5 ms
6,784 KB |
testcase_26 | AC | 5 ms
6,528 KB |
testcase_27 | AC | 7 ms
7,552 KB |
testcase_28 | AC | 3 ms
5,376 KB |
testcase_29 | AC | 10 ms
10,368 KB |
testcase_30 | AC | 15 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 6 ms
5,376 KB |
testcase_33 | AC | 8 ms
5,376 KB |
testcase_34 | AC | 7 ms
5,376 KB |
testcase_35 | AC | 5 ms
5,376 KB |
testcase_36 | AC | 12 ms
5,376 KB |
testcase_37 | AC | 2 ms
5,376 KB |
testcase_38 | AC | 13 ms
5,376 KB |
testcase_39 | AC | 7 ms
5,376 KB |
ソースコード
#pragma GCC optimize ("O3") #pragma GCC target ("avx") #include "bits/stdc++.h" // define macro "/D__MAI" using namespace std; typedef long long int ll; #define debugv(v) {printf("L%d %s > ",__LINE__,#v);for(auto e:v){cout<<e<<" ";}cout<<endl;} #define debuga(m,w) {printf("L%d %s > ",__LINE__,#m);for(int x=0;x<(w);x++){cout<<(m)[x]<<" ";}cout<<endl;} #define debugaa(m,h,w) {printf("L%d %s >\n",__LINE__,#m);for(int y=0;y<(h);y++){for(int x=0;x<(w);x++){cout<<(m)[y][x]<<" ";}cout<<endl;}} #define ALL(v) (v).begin(),(v).end() #define repeat(cnt,l) for(auto cnt=0ll;(cnt)<(l);++(cnt)) #define rrepeat(cnt,l) for(auto cnt=(l)-1;0<=(cnt);--(cnt)) #define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt)) #define diterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);--(cnt)) #define MD 1000000007ll #define PI 3.1415926535897932384626433832795 template<typename T1, typename T2> ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << "(" << p.first << ":" << p.second << ")"; return o; } template<typename T> T& maxset(T& to, const T& val) { return to = max(to, val); } template<typename T> T& minset(T& to, const T& val) { return to = min(to, val); } void bye(string s, int code = 0) { cout << s << endl; exit(code); } mt19937_64 randdev(8901016); inline ll rand_range(ll l, ll h) { return uniform_int_distribution<ll>(l, h)(randdev); } #if defined(_WIN32) || defined(_WIN64) #define getchar_unlocked _getchar_nolock #define putchar_unlocked _putchar_nolock #elif defined(__GNUC__) #else #define getchar_unlocked getchar #define putchar_unlocked putchar #endif namespace { #define isvisiblechar(c) (0x21<=(c)&&(c)<=0x7E) class MaiScanner { public: template<typename T> void input_integer(T& var) { var = 0; T sign = 1; int cc = getchar_unlocked(); for (; cc<'0' || '9'<cc; cc = getchar_unlocked()) if (cc == '-') sign = -1; for (; '0' <= cc && cc <= '9'; cc = getchar_unlocked()) var = (var << 3) + (var << 1) + cc - '0'; var = var * sign; } inline int c() { return getchar_unlocked(); } inline MaiScanner& operator>>(int& var) { input_integer<int>(var); return *this; } inline MaiScanner& operator>>(long long& var) { input_integer<long long>(var); return *this; } inline MaiScanner& operator>>(string& var) { int cc = getchar_unlocked(); for (; !isvisiblechar(cc); cc = getchar_unlocked()); for (; isvisiblechar(cc); cc = getchar_unlocked()) var.push_back(cc); return *this; } template<typename IT> void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; } }; class MaiPrinter { public: template<typename T> void output_integer(T var) { if (var == 0) { putchar_unlocked('0'); return; } if (var < 0) putchar_unlocked('-'), var = -var; char stack[32]; int stack_p = 0; while (var) stack[stack_p++] = '0' + (var % 10), var /= 10; while (stack_p) putchar_unlocked(stack[--stack_p]); } inline MaiPrinter& operator<<(char c) { putchar_unlocked(c); return *this; } inline MaiPrinter& operator<<(int var) { output_integer<int>(var); return *this; } inline MaiPrinter& operator<<(long long var) { output_integer<long long>(var); return *this; } inline MaiPrinter& operator<<(char* str_p) { while (*str_p) putchar_unlocked(*(str_p++)); return *this; } inline MaiPrinter& operator<<(const string& str) { const char* p = str.c_str(); const char* l = p + str.size(); while (p < l) putchar_unlocked(*p++); return *this; } template<typename IT> void join(IT begin, IT end, char sep = '\n') { for (auto it = begin; it != end; ++it) *this << *it << sep; } }; } MaiScanner scanner; MaiPrinter printer; template<typename T> // typedef double T; class Matrix { public: size_t height_, width_; valarray<T> data_; Matrix(size_t height, size_t width) :height_(height), width_(width), data_(height*width) {} Matrix(size_t height, size_t width, const valarray<T>& data) :height_(height), width_(width), data_(data) {} inline T& operator()(size_t y, size_t x) { return data_[y*width_ + x]; } inline T operator() (size_t y, size_t x) const { return data_[y*width_ + x]; } inline T& at(size_t y, size_t x) { return data_[y*width_ + x]; } inline T at(size_t y, size_t x) const { return data_[y*width_ + x]; } inline void resize(size_t h, size_t w) { height_ = h; width_ = w; data_.resize(h*w); } inline void resize(size_t h, size_t w, T val) { height_ = h; width_ = w; data_.resize(h*w, val); } inline void fill(T val) { data_ = val; } Matrix<T>& setDiag(T val) { for (size_t i = 0, en = min(width_, height_); i < en; ++i)at(i, i) = val; return *this; } void print(ostream& os) { os << "- - -" << endl; // << setprecision(3) for (size_t y = 0; y < height_; ++y) { for (size_t x = 0; x < width_; ++x) { os << setw(7) << at(y, x) << ' '; }os << endl; } } valarray<valarray<T>> to_valarray() const { valarray<valarray<T>> work(height_); for (size_t i = 0; i < height_; ++i) { auto &v = work[i]; v.resize(height_); for (size_t j = 0; j < width_; ++j) v[j] = at(i, j); } return work; } // mathematics Matrix<T> pow(long long); double det() const; T tr(); Matrix<T>& transpose_self(); Matrix<T> transpose() const; struct LU { size_t size; vector<int> pivot; vector<T> elem; }; }; // IO template<typename T> inline ostream& operator << (ostream& os, Matrix<T> mat) { mat.print(os); return os; } // 掛け算 template<typename T> Matrix<T> multiply(const Matrix<T>& mat1, const Matrix<T>& mat2) { assert(mat1.width_ == mat2.height_); Matrix<T> result(mat1.height_, mat2.width_); for (size_t i = 0; i < mat1.height_; i++) { for (size_t j = 0; j < mat2.width_; j++) { for (size_t k = 0; k < mat1.width_; k++) { result(i, j) += mat1(i, k) * mat2(k, j); } } } return result; } template<typename T> valarray<T> multiply(const Matrix<T>& mat1, const valarray<T>& vec2) { assert(mat1.width_ == vec2.size()); valarray<T> result(mat1.height_); for (size_t i = 0, j; i < mat1.height_; i++) { for (j = 0; j < mat1.width_; j++) { result[i] += mat1(i, j) * vec2[j]; } } return result; } template<typename T> inline Matrix<T>& operator*=(Matrix<T>& mat1, Matrix<T>& mat2) { mat1 = multiply(mat1, mat2); return mat1; } template<typename T> inline Matrix<T> operator*(Matrix<T>& mat1, Matrix<T>& mat2) { return multiply(mat1, mat2); } // スカラー template<typename T> inline Matrix<T>& operator+=(Matrix<T>& mat, T val) { mat.data_ += val; return mat; } template<typename T> inline Matrix<T>& operator*=(Matrix<T>& mat, T val) { mat.data_ *= val; return mat; } template<typename T> inline Matrix<T>& operator/=(Matrix<T>& mat, T val) { mat.data_ /= val; return mat; } template<typename T> inline Matrix<T>& operator^=(Matrix<T>& mat, T val) { mat.data_ ^= val; return mat; } // 行列 template<typename T> inline Matrix<T>& operator+=(Matrix<T>& mat1, Matrix<T>& mat2) { mat1.data_ += mat2.data_; return mat1; } template<typename T> inline Matrix<T> operator+(Matrix<T>& mat1, Matrix<T>& mat2) { return Matrix<T>(mat1.height_, mat1.width_, mat1.data_ + mat2.data_); } template<typename T> Matrix<T> Matrix<T>::pow(long long p) { assert(height_ == width_); Matrix<T> a = *this; Matrix<T> b(height_, height_); b.setDiag(1); while (0 < p) { if (p % 2) { b *= a; } a *= a; p /= 2; } return b; } class llmod { private: ll val_; inline ll cut(ll v) const { return ((v%MOD) + MOD) % MOD; } public: static const ll MOD = MD; // <= llmod() : val_(0) {} llmod(ll num) :val_(cut(num)) {} llmod(const llmod& lm) : val_(lm.val_) {} inline operator ll() const { return val_; } inline ll operator *() const { return val_; } inline llmod& operator=(const llmod& lm) { val_ = lm.val_; return *this; } inline llmod& operator=(ll v) { val_ = cut(v); return *this; } inline llmod& operator+=(ll v) { val_ = cut(val_ + v); return *this; } inline llmod& operator+=(const llmod& l) { val_ = cut(val_ + l.val_); return *this; } inline llmod& operator-=(ll v) { val_ = cut(val_ - v); return *this; } inline llmod& operator-=(const llmod& l) { val_ = cut(val_ - l.val_); return *this; } inline llmod& operator*=(ll v) { val_ = cut(val_ * v); return *this; } inline llmod& operator*=(const llmod& l) { val_ = cut(val_ * l.val_); return *this; } inline llmod& operator++() { val_ = (val_ + 1) % MOD; return *this; } inline llmod operator++(int) { llmod t = *this; val_ = (val_ + 1) % MOD; return t; } }; inline ostream& operator<<(ostream& os, const llmod& l) { os << *l; return os; } inline llmod operator+(llmod t, const llmod& r) { return t += r; } inline llmod operator-(llmod t, const llmod& r) { return t -= r; } inline llmod operator*(llmod t, const llmod& r) { return t *= r; } // MEMO : 逆元...powm(n,MD-2) llmod pow(llmod x, ll p) { llmod y = 1; while (0 < p) { if (p % 2) y *= x; x *= x; p /= 2; } return y; } inline llmod& operator/=(llmod& l, const llmod& r) { return l *= pow(r, llmod::MOD - 2); } ll m, n, kei; ll aa[10010]; int main() { scanner >> n >> kei; scanner.in(aa, aa + n); --kei; if (40 < n) { vector<ll> sum(kei+10); repeat(i, n) sum[i + 1] = (sum[i] + aa[i]) % MD; iterate(i, n, kei+1) { sum[i + 1] = (sum[i] + sum[i] - sum[i - n] + MD) % MD; } cout << ((sum[kei] - sum[kei-n]+MD)%MD) << ' ' << sum[kei+1] << endl; } else { m = n + 1; Matrix<llmod> mat(m, m); valarray<llmod> v(m); repeat(i, n) v[i] = aa[i]; repeat(i, n) { iterate(j, i, n) { mat(i, j) = 1; } repeat(j, n) { repeat(k, i) mat(i, j) += mat(k, j); } } repeat(i, m) mat(n, i) = 1; auto p = mat.pow(kei / n); auto u = multiply(p, v); auto r = u[kei%n]; llmod s = u[n]; if ((kei%n)+1 < n) repeat(i, (kei+1)%n) s += u[i]; else { p *= mat; s = multiply(p, v)[n] ; } cout << r << ' ' << s << endl; } return 0; }