結果

問題 No.200 カードファイト!
ユーザー sune232002sune232002
提出日時 2015-04-29 00:48:44
言語 C++11
(gcc 11.4.0)
結果
WA  
実行時間 -
コード長 5,646 bytes
コンパイル時間 1,536 ms
コンパイル使用メモリ 179,440 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-07-05 15:50:20
合計ジャッジ時間 2,170 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 4 ms
5,248 KB
testcase_01 AC 5 ms
5,376 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 1 ms
5,376 KB
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 1 ms
5,376 KB
testcase_14 AC 1 ms
5,376 KB
testcase_15 AC 1 ms
5,376 KB
testcase_16 WA -
testcase_17 AC 1 ms
5,376 KB
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
testcase_20 AC 3 ms
5,376 KB
testcase_21 AC 2 ms
5,376 KB
testcase_22 AC 2 ms
5,376 KB
testcase_23 AC 1 ms
5,376 KB
testcase_24 AC 2 ms
5,376 KB
testcase_25 AC 2 ms
5,376 KB
testcase_26 AC 2 ms
5,376 KB
testcase_27 AC 2 ms
5,376 KB
testcase_28 AC 5 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define REP(i,n) for(int i=0;i<(int)(n);++i)
#define REPR(i,n) for (int i=(int)(n)-1;i>=0;--i)
#define FOR(i,c) for(__typeof((c).begin())i=(c).begin();i!=(c).end();++i)
#define ALL(c) (c).begin(), (c).end()
#define valid(y,x,h,w) (0<=y&&y<h&&0<=x&&x<w)
#define tpl(...) make_tuple(__VA_ARGS__)
const int INF = 0x3f3f3f3f;
const double EPS = 1e-8;
const double PI = acos(-1);
const int dy[] = {-1,0,1,0};
const int dx[] = {0,1,0,-1};
typedef long long ll;
typedef pair<int,int> pii;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
template<typename Ch,typename Tr,typename C,typename=decltype(begin(C()))>basic_ostream<Ch,Tr>& operator<<(basic_ostream<Ch,Tr>&os,
const C& c){os<<'[';for(auto i=begin(c);i!=end(c);++i)os<<(i==begin(c)?"":" ")<<*i;return os<<']';}
template<class S,class T>ostream&operator<<(ostream &o,const pair<S,T>&t){return o<<'('<<t.first<<','<<t.second<<')';}
template<int N,class Tp>void output(ostream&,const Tp&){}
template<int N,class Tp,class,class ...Ts>void output(ostream &o,const Tp&t){if(N)o<<',';o<<get<N>(t);output<N+1,Tp,Ts...>(o,t);}
template<class ...Ts>ostream&operator<<(ostream&o,const tuple<Ts...>&t){o<<'(';output<0,tuple<Ts...>,Ts...>(o,t);return o<<')';}
template<class T>void output(T t,char z=10){if(t<0)t=-t,putchar(45);int c[20];
int k=0;while(t)c[k++]=t%10,t/=10;for(k||(c[k++]=0);k;)putchar(c[--k]^48);putchar(z);}
template<class T>void outputs(T t){output(t);}
template<class S,class ...T>void outputs(S a,T...t){output(a,32);outputs(t...);}
template<class T>void output(T *a,int n){REP(i,n)cout<<a[i]<<(i!=n-1?',':'\n');}
template<class T>void output(T *a,int n,int m){REP(i,n)output(a[i],m);}
template<class T>bool input(T &t){int n=1,c;for(t=0;!isdigit(c=getchar())&&~c&&c-45;);
if(!~c)return 0;for(c-45&&(n=0,t=c^48);isdigit(c=getchar());)t=10*t+c-48;t=n?-t:t;return 1;}
template<class S,class ...T>bool input(S&a,T&...t){input(a);return input(t...);}
template<class T>bool inputs(T *a, int n) { REP(i,n) if(!input(a[i])) return 0; return 1;}

typedef int Weight;
struct Edge {
  int src, dst;
  Weight capacity, cost;
  int rev;
  Edge(int src, int dst, Weight capacity, Weight cost) :
    src(src), dst(dst), capacity(capacity), cost(cost) { }
  Edge(int src, int dst, Weight capacity, Weight cost, int rev) :
    src(src), dst(dst), capacity(capacity), cost(cost), rev(rev) { }
};
bool operator < (const Edge &e, const Edge &f) {
  return e.cost != f.cost ? e.cost > f.cost : // !!INVERSE!!
    e.src != f.src ? e.src < f.src : e.dst < f.dst;
}
typedef vector<Edge> Edges;
typedef vector<Edges> Graph;

typedef vector<Weight> Array;
typedef vector<Array> Matrix;

void add_edge(Graph &g, int s, int d, Weight cap, Weight cost) {
  g[s].push_back(Edge(s,d,cap,cost));
  g[d].push_back(Edge(d,s,0,-cost));
}

#define RESIDUE(u,v) (capacity[u][v] - flow[u][v])
#define RCOST(u,v) (cost[u][v] + h[u] - h[v])

// Dijkstra
pair<Weight, Weight> minimumCostFlow(const Graph &g, int s, int t) {
  const int n = g.size();
  Matrix capacity(n, Array(n)), cost(n, Array(n)), flow(n, Array(n));
  REP(u,n) FOR(e,g[u]) {
    capacity[e->src][e->dst] += e->capacity;
    cost[e->src][e->dst] += e->cost;
  }
  pair<Weight, Weight> total; // (cost, flow)
  vector<Weight> h(n, INF);
  h[s] = 0;
  // ベルマンフォードでポテンシャルを求めて負辺に対応
  REP(k, n) REP(i, n) FOR(e,g[i]) if (capacity[e->src][e->dst])
    h[e->dst] = min(h[e->dst], h[e->src] + cost[e->src][e->dst]);

  for (Weight F = INF; F > 0; ) { // residual flow
    vector<Weight> d(n, INF); d[s] = 0;
    vector<int> p(n, -1);
    priority_queue<Edge> Q;
    for (Q.push(Edge(-2, s, 0, 0)); !Q.empty(); ) {
      Edge e = Q.top(); Q.pop();
      if (p[e.dst] != -1) continue;
      p[e.dst] = e.src;
      FOR(f, g[e.dst]) if (RESIDUE(f->src, f->dst) > 0) {
        if (d[f->dst] > d[f->src] + RCOST(f->src, f->dst)) {
          d[f->dst] = d[f->src] + RCOST(f->src, f->dst);
          Q.push( Edge(f->src, f->dst, 0, d[f->dst]) );
        }
      }
    }
    if (p[t] == -1) break;
    Weight f = F;
    for (int u = t; u != s; u = p[u])
      f = min(f, RESIDUE(p[u], u));
    for (int u = t; u != s; u = p[u]) {
      total.first += f * cost[p[u]][u];
      flow[p[u]][u] += f; flow[u][p[u]] -= f;
    }
    F -= f;
    total.second += f;
    REP(u, n) if (h[u] != INF) h[u] += d[u]; // ifいらない?
  }
  return total;
}

int B[50];
int D[50];
int l1[50], r1[50];
int l2[50], r2[50];

int main() {
  int n;
  while(input(n)) {
    int A; cin >> A;
    inputs(B,A);
    int C; cin >> C;
    inputs(D,C);
    REP(i,n) {
      l1[i] = (i / A) * A;
      r1[i] = (i / A + 1) * A;
      l2[i] = (i / C) * C;
      r2[i] = (i / C + 1) * C;
    }
    int N = r1[n-1];
    int M = r2[n-1];

    set<pii> S;
    REP(i,N) {
      for (int j=l2[i]; j<r2[i]; ++j)
        S.insert(pii(i,j));
    }
    REP(j,M) {
      for (int i=l1[j]; i<r1[j]; ++i)
        S.insert(pii(i,j));
    }
    Graph g(4+N+M);
    REP(i,l1[n-1]) add_edge(g,N+M,i,1,0);
    REP(i,l2[n-1]) add_edge(g,N+i,N+M+1,1,0);
    add_edge(g,N+M,N+M+2,n-l1[n-1],0);
    for (int i=l1[n-1]; i<N; ++i) {
      add_edge(g,N+M+2,i,1,0);
    }
    add_edge(g,N+M+3,N+M+1,n-l2[n-1],0);
    for (int i=l2[n-1]; i<M; ++i) {
      add_edge(g,N+i,N+M+3,1,0);
    }
    // add_edge(g,N+M+1,N+M+3,n);
    for (auto p : S) {
      int x = p.first;
      int y = p.second;
      add_edge(g,x,N+y,1,-(B[x%A] > D[y%C]));
    }
    cout << -minimumCostFlow(g,N+M,N+M+1).first << endl;
  }
}
0