結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | mayoko_ |
提出日時 | 2015-05-01 16:26:22 |
言語 | C++11 (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 58 ms / 5,000 ms |
コード長 | 2,661 bytes |
コンパイル時間 | 1,548 ms |
コンパイル使用メモリ | 167,328 KB |
実行使用メモリ | 11,224 KB |
最終ジャッジ日時 | 2024-07-05 17:22:10 |
合計ジャッジ時間 | 3,336 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 37 |
ソースコード
#include <bits/stdc++.h>#define rep(i, n) for (int (i) = 0; (i) < (int)(n); (i)++)const int dx[] = {1, 0, -1, 0};const int dy[] = {0, 1, 0, -1};using namespace std;typedef long long ll;typedef long long number;typedef vector<number> vec;typedef vector<vec> matrix;const ll MOD = 1e9+7;// O( n )matrix identity(int n) {matrix A(n, vec(n));for (int i = 0; i < n; ++i) A[i][i] = 1;return A;}// O( n^3 )matrix mul(const matrix &A, const matrix &B) {matrix C(A.size(), vec(B[0].size()));for (int i = 0; i < (int)C.size(); ++i)for (int j = 0; j < (int)C[i].size(); ++j)for (int k = 0; k < (int)A[i].size(); ++k) {C[i][j] += A[i][k] * B[k][j];C[i][j] %= MOD;}return C;}// O( n^3 log e )matrix pow(const matrix &A, ll e) {if (e == 0) return identity(A.size());if (e == 1) return A;if (e % 2 == 0) {matrix tmp = pow(A, e/2);return mul(tmp, tmp);} else {matrix tmp = pow(A, e-1);return mul(A, tmp);}}const int MAXN = 10010;int A[MAXN];ll F[1001010];int main() {cin.tie(0);ios::sync_with_stdio(false);int N;ll K;cin >> N >> K;for (int i = 0; i < N; i++) cin >> A[i];if (K > 1e6) {matrix B(2*N, vector<number>(2*N));for (int i = 0; i < N; i++) {B[0][i] = 1;}for (int i = 0; i < N-1; i++) {B[i+1][i] = 1;}for (int i = 0; i < N; i++) {B[i+N][i] = 1;B[i+N][i+N] = 1;}B = pow(B, K-N);matrix C(2*N, vector<number>(N));for (int i = 0; i < N; i++) C[i][i] = 1;C = mul(B, C);ll f = 0, s = 0;// ffor (int i = 0; i < N; i++) {f += C[0][i] * A[N-1-i];f %= MOD;}// sfor (int i = 0; i < N; i++) {s += A[i];}for (int i = 0; i < N; i++) {if (i == 0) s += (C[N][i]+C[0][i]-1) * A[N-1-i];else s += (C[N][i]+C[0][i]) * A[N-1-i];s %= MOD;}if (s < 0) s += MOD;cout << f << " " << s << endl;} else {ll sum = 0;for (int i = 0; i < N; i++) {F[i] = A[i];sum += A[i];}for (int i = N; i < K; i++) {F[i] = sum % MOD;sum += MOD+F[i]-F[i-N];sum %= MOD;}sum = 0;for (int i = 0; i < K; i++) {sum += F[i];sum %= MOD;}cout << F[K-1] << " " << sum << endl;}return 0;}