結果

問題 No.194 フィボナッチ数列の理解(1)
ユーザー mayoko_mayoko_
提出日時 2015-05-01 16:26:22
言語 C++11
(gcc 13.3.0)
結果
AC  
実行時間 58 ms / 5,000 ms
コード長 2,661 bytes
コンパイル時間 1,548 ms
コンパイル使用メモリ 167,328 KB
実行使用メモリ 11,224 KB
最終ジャッジ日時 2024-07-05 17:22:10
合計ジャッジ時間 3,336 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 37
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#define rep(i, n) for (int (i) = 0; (i) < (int)(n); (i)++)
const int dx[] = {1, 0, -1, 0};
const int dy[] = {0, 1, 0, -1};
using namespace std;
typedef long long ll;
typedef long long number;
typedef vector<number> vec;
typedef vector<vec> matrix;
const ll MOD = 1e9+7;
// O( n )
matrix identity(int n) {
matrix A(n, vec(n));
for (int i = 0; i < n; ++i) A[i][i] = 1;
return A;
}
// O( n^3 )
matrix mul(const matrix &A, const matrix &B) {
matrix C(A.size(), vec(B[0].size()));
for (int i = 0; i < (int)C.size(); ++i)
for (int j = 0; j < (int)C[i].size(); ++j)
for (int k = 0; k < (int)A[i].size(); ++k) {
C[i][j] += A[i][k] * B[k][j];
C[i][j] %= MOD;
}
return C;
}
// O( n^3 log e )
matrix pow(const matrix &A, ll e) {
if (e == 0) return identity(A.size());
if (e == 1) return A;
if (e % 2 == 0) {
matrix tmp = pow(A, e/2);
return mul(tmp, tmp);
} else {
matrix tmp = pow(A, e-1);
return mul(A, tmp);
}
}
const int MAXN = 10010;
int A[MAXN];
ll F[1001010];
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N;
ll K;
cin >> N >> K;
for (int i = 0; i < N; i++) cin >> A[i];
if (K > 1e6) {
matrix B(2*N, vector<number>(2*N));
for (int i = 0; i < N; i++) {
B[0][i] = 1;
}
for (int i = 0; i < N-1; i++) {
B[i+1][i] = 1;
}
for (int i = 0; i < N; i++) {
B[i+N][i] = 1;
B[i+N][i+N] = 1;
}
B = pow(B, K-N);
matrix C(2*N, vector<number>(N));
for (int i = 0; i < N; i++) C[i][i] = 1;
C = mul(B, C);
ll f = 0, s = 0;
// f
for (int i = 0; i < N; i++) {
f += C[0][i] * A[N-1-i];
f %= MOD;
}
// s
for (int i = 0; i < N; i++) {
s += A[i];
}
for (int i = 0; i < N; i++) {
if (i == 0) s += (C[N][i]+C[0][i]-1) * A[N-1-i];
else s += (C[N][i]+C[0][i]) * A[N-1-i];
s %= MOD;
}
if (s < 0) s += MOD;
cout << f << " " << s << endl;
} else {
ll sum = 0;
for (int i = 0; i < N; i++) {
F[i] = A[i];
sum += A[i];
}
for (int i = N; i < K; i++) {
F[i] = sum % MOD;
sum += MOD+F[i]-F[i-N];
sum %= MOD;
}
sum = 0;
for (int i = 0; i < K; i++) {
sum += F[i];
sum %= MOD;
}
cout << F[K-1] << " " << sum << endl;
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0