結果
問題 | No.655 E869120 and Good Triangles |
ユーザー | satanic |
提出日時 | 2018-02-24 00:19:21 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,925 bytes |
コンパイル時間 | 1,641 ms |
コンパイル使用メモリ | 131,976 KB |
実行使用メモリ | 604,884 KB |
最終ジャッジ日時 | 2024-10-10 02:46:21 |
合計ジャッジ時間 | 5,731 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | WA | - |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | WA | - |
testcase_10 | MLE | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
ソースコード
// need #include <iostream> #include <algorithm> // data structure #include <bitset> #include <map> #include <queue> #include <set> #include <stack> #include <string> #include <utility> #include <vector> //#include <complex> //#include <deque> #include <valarray> // stream //#include <istream> //#include <sstream> //#include <ostream> #include <fstream> // etc #include <cassert> #include <cmath> #include <functional> #include <iomanip> #include <chrono> #include <random> #include <numeric> // input #define INIT std::ios::sync_with_stdio(false);std::cin.tie(0); #define VAR(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__); template<typename T> void MACRO_VAR_Scan(T& t) { std::cin >> t; } template<typename First, typename...Rest>void MACRO_VAR_Scan(First& first, Rest&...rest) { std::cin >> first; MACRO_VAR_Scan(rest...); } #define VEC_ROW(type, n, ...)std::vector<type> __VA_ARGS__;MACRO_VEC_ROW_Init(n, __VA_ARGS__); for(int i=0; i<n; ++i){MACRO_VEC_ROW_Scan(i, __VA_ARGS__);} template<typename T> void MACRO_VEC_ROW_Init(int n, T& t) { t.resize(n); } template<typename First, typename...Rest>void MACRO_VEC_ROW_Init(int n, First& first, Rest&...rest) { first.resize(n); MACRO_VEC_ROW_Init(n, rest...); } template<typename T> void MACRO_VEC_ROW_Scan(int p, T& t) { std::cin >> t[p]; } template<typename First, typename...Rest>void MACRO_VEC_ROW_Scan(int p, First& first, Rest&...rest) { std::cin >> first[p]; MACRO_VEC_ROW_Scan(p, rest...); } #define VEC(type, c, n) std::vector<type> c(n);for(auto& i:c)std::cin>>i; #define MAT(type, c, m, n) std::vector<std::vector<type>> c(m, std::vector<type>(n));for(auto& r:c)for(auto& i:r)std::cin>>i; // output #define OUT(d) std::cout<<(d); #define FOUT(n, d) std::cout<<std::fixed<<std::setprecision(n)<<(d); #define SOUT(n, c, d) std::cout<<std::setw(n)<<std::setfill(c)<<(d); #define SP std::cout<<" "; #define TAB std::cout<<"\t"; #define BR std::cout<<"\n"; #define SPBR(i, n) std::cout<<(i + 1 == n ? '\n' : ' '); #define ENDL std::cout<<std::endl; #define FLUSH std::cout<<std::flush; #define SHOW(d) {std::cerr << #d << "\t:" << (d) << "\n";} #define SHOWVECTOR(v) {std::cerr << #v << "\t:";for(const auto& xxx : v){std::cerr << xxx << " ";}std::cerr << "\n";} #define SHOWVECTOR2(v) {std::cerr << #v << "\t:\n";for(const auto& xxx : v){for(const auto& yyy : xxx){std::cerr << yyy << " ";}std::cerr << "\n";}} #define SHOWQUEUE(a) {auto tmp(a);std::cerr << #a << "\t:";while(!tmp.empty()){std::cerr << tmp.front() << " ";tmp.pop();}std::cerr << "\n";} // utility #define ALL(a) (a).begin(),(a).end() #define FOR(i, a, b) for(int i=(a);i<(b);++i) #define RFOR(i, a, b) for(int i=(b)-1;i>=(a);--i) #define REP(i, n) for(int i=0;i<int(n);++i) #define RREP(i, n) for(int i=int(n)-1;i>=0;--i) #define FORLL(i, a, b) for(ll i=ll(a);i<ll(b);++i) #define RFORLL(i, a, b) for(ll i=ll(b)-1;i>=ll(a);--i) #define REPLL(i, n) for(ll i=0;i<ll(n);++i) #define RREPLL(i, n) for(ll i=ll(n)-1;i>=0;--i) #define IN(a, x, b) (a<=x && x<b) template<typename T> inline T CHMAX(T& a, const T b) { return a = (a < b) ? b : a; } template<typename T> inline T CHMIN(T& a, const T b) { return a = (a > b) ? b : a; } #define EXCEPTION(msg) throw std::string("Exception : " msg " [ in ") + __func__ + " : " + std::to_string(__LINE__) + " lines ]" #define TRY(cond, msg) try {if (cond) EXCEPTION(msg);}catch (std::string s) {std::cerr << s << std::endl;} void CHECKTIME(std::function<void()> f) { auto start = std::chrono::system_clock::now(); f(); auto end = std::chrono::system_clock::now(); auto res = std::chrono::duration_cast<std::chrono::nanoseconds>((end - start)).count(); std::cerr << "[Time:" << res << "ns (" << res / (1.0e9) << "s)]\n"; } // test template<class T> std::vector<std::vector<T>> VV(int n, int m, T init = T()) { return std::vector<std::vector<T>>(n, std::vector<T>(m, init)); } template<typename S, typename T> std::ostream& operator<<(std::ostream& os, std::pair<S, T> p) { os << "(" << p.first << ", " << p.second << ")"; return os; } // type/const //#define int ll using ll = long long; using ull = unsigned long long; using ld = long double; using PAIR = std::pair<int, int>; using PAIRLL = std::pair<ll, ll>; constexpr int INFINT = 1 << 30; // 1.07x10^ 9 constexpr int INFINT_LIM = (1LL << 31) - 1; // 2.15x10^ 9 constexpr ll INFLL = 1LL << 60; // 1.15x10^18 constexpr ll INFLL_LIM = (1LL << 62) - 1 + (1LL << 62); // 9.22x10^18 constexpr double EPS = 1e-9; constexpr int MOD = 1000000007; constexpr double PI = 3.141592653589793238462643383279; template<class T, size_t N> void FILL(T(&a)[N], const T& val) { for (auto& x : a) x = val; } template<class ARY, size_t N, size_t M, class T> void FILL(ARY(&a)[N][M], const T& val) { for (auto& b : a) FILL(b, val); } template<class T> void FILL(std::vector<T>& a, const T& val) { for (auto& x : a) x = val; } template<class ARY, class T> void FILL(std::vector<std::vector<ARY>>& a, const T& val) { for (auto& b : a) FILL(b, val); } // ------------>8------------------------------------->8------------ signed main() { INIT; VAR(int, n, k, p); VEC_ROW(int, k, x, y); if (n == 1) { OUT(!p)BR; return 0; } int N = n * (n + 1) / 2; std::vector<std::vector<int>> g(N + 1); auto POS = [](int i, int j) { return i * (i + 1) / 2 + j; }; REP(i, n - 1) REP(j, i + 1) { g[POS(i, j)].emplace_back(POS(i + 1, j)); g[POS(i, j)].emplace_back(POS(i + 1, j + 1)); if (j > 0) g[POS(i, j)].emplace_back(POS(i, j - 1)); g[POS(i + 1, j)].emplace_back(POS(i, j)); g[POS(i + 1, j + 1)].emplace_back(POS(i, j)); if (j > 0) g[POS(i, j - 1)].emplace_back(POS(i, j)); } REP(i, k) { --x[i]; --y[i]; g[N].emplace_back(POS(x[i], y[i])); } std::vector<int> dist(N + 1, INFINT); dist[N] = -1; std::queue<int> que({N}); while (!que.empty()) { int now = que.front(); que.pop(); for (auto to : g[now]) { if (dist[to] > dist[now] + 1) { dist[to] = dist[now] + 1; que.push(to); } } } std::vector<int> A(N), B(N), C(N), dp(N, INFINT); { // A REP(j, n) A[POS(n - 1, j)] = dist[POS(n - 1, j)]; REP(j, n - 1) A[POS(n - 2, j)] = dist[POS(n - 1, j)] + dist[POS(n - 1, j + 1)] + dist[POS(n - 2, j)]; RREP(i, n - 2) REP(j, i + 1) { A[POS(i, j)] = A[POS(i + 1, j)] + A[POS(i + 1, j + 1)] - A[POS(i + 2, j + 1)] + dist[POS(i, j)]; } } { // B B[POS(n - 1, 0)] = A[POS(n - 1, 0)]; FOR(j, 1, n) B[POS(n - 1, j)] = B[POS(n - 1, j - 1)] + dist[POS(n - 1, j)]; RREP(i, n - 1) { B[POS(i, 0)] = A[POS(i, 0)]; FOR(j, 1, i + 1) { B[POS(i, j)] = B[POS(i, j - 1)] + B[POS(i + 1, j + 1)] - B[POS(i + 1, j)] + dist[POS(i, j)]; } } } { // C C[POS(n - 1, n - 1)] = A[POS(n - 1, n - 1)]; RREP(j, n - 1) C[POS(n - 1, j)] = C[POS(n - 1, j + 1)] + dist[POS(n - 1, j)]; RREP(i, n - 1) { C[POS(i, i)] = A[POS(i, i)]; RREP(j, i) { C[POS(i, j)] = C[POS(i, j + 1)] + C[POS(i + 1, j)] - C[POS(i + 1, j + 1)] + dist[POS(i, j)]; } } } auto calcSub = [&](int i, int j, int b) { if (i == b) return dist[POS(i, j)]; if (b == n - 1) return A[POS(i, j)]; int l = j, r = j + (b - i) + 1; return A[POS(i, j)] - (B[POS(b + 1, r)] + C[POS(b + 1, l)] - B[POS(b + 1, b + 1)]); }; int ans = 0; RREP(i, n) REP(j, i + 1) { if (i == n - 1) { if (A[POS(i, j)] >= p) { ++ans; dp[POS(i, j)] = n - 1; } } else { dp[POS(i, j)] = std::min(dp[POS(i + 1, j)], dp[POS(i + 1, j + 1)]); int sum = A[POS(i, j)]; int& b = dp[POS(i, j)]; if (b == INFINT) { if (sum >= p) b = n - 1; else continue; } if (b < n - 1) { int l = j, r = j + (b - i); sum -= B[POS(b + 1, r)] + C[POS(b + 1, l)] - B[POS(b + 1, b + 1)]; } while (i < b && sum >= p) { sum = calcSub(i, j, --b); } CHMAX(b, i); while (b < n) { sum = calcSub(i, j, b); if (sum >= p) break; else ++b; } ans += n - b; } } OUT(ans)BR; return 0; }