結果
問題 | No.75 回数の期待値の問題 |
ユーザー | Pachicobue |
提出日時 | 2018-02-28 19:25:03 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 17 ms / 5,000 ms |
コード長 | 8,371 bytes |
コンパイル時間 | 1,023 ms |
コンパイル使用メモリ | 84,668 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-01 09:38:16 |
合計ジャッジ時間 | 1,801 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,944 KB |
testcase_15 | AC | 2 ms
6,944 KB |
testcase_16 | AC | 3 ms
6,944 KB |
testcase_17 | AC | 9 ms
6,940 KB |
testcase_18 | AC | 14 ms
6,940 KB |
testcase_19 | AC | 17 ms
6,940 KB |
ソースコード
#include <iostream> #include <iomanip> #include <vector> #include <cassert> using namespace std; template <typename T> struct Matrix { Matrix(const int n) : Matrix{n, n} {} Matrix(const int r, const int c) : R{r}, C{c}, table(r, vector<T>(c, static_cast<T>(0))) {} vector<T>& operator[](const int n) { return table[n]; } const vector<T>& operator[](const int n) const { return table[n]; } Matrix& operator+=(const Matrix& mat) { assert(R == mat.R and C == mat.C); for (int i = 0; i < R; i++) { for (int j = 0; j < C; j++) { table[i][j] += mat[i][j]; } } return *this; } Matrix& operator-=(const Matrix& mat) { assert(R == mat.R and C == mat.C); for (int i = 0; i < R; i++) { for (int j = 0; j < C; j++) { table[i][j] -= mat[i][j]; } } return *this; } Matrix& operator*=(const T val) { for (int i = 0; i < R; i++) { for (int j = 0; j < C; j++) { table[i][j] *= val; } } return *this; } Matrix& operator/=(const T val) { assert(val != 0); for (int i = 0; i < R; i++) { for (int j = 0; j < C; j++) { table[i][j] /= val; } } return *this; } Matrix operator-() const { Matrix result(R, C); for (int i = 0; i < R; i++) { for (int j = 0; j < C; j++) { result[i][j] = -table[i][j]; } } return result; } Matrix operator+(const Matrix& mat) { assert(R == mat.R and C == mat.C); Matrix result(R, C); for (int i = 0; i < R; i++) { for (int j = 0; j < C; j++) { result[i][j] = table[i][j] + mat[i][j]; } } return result; } Matrix operator-(const Matrix& mat) { assert(R == mat.R and C == mat.C); Matrix result(R, C); for (int i = 0; i < R; i++) { for (int j = 0; j < C; j++) { result.table[i][j] = table[i][j] - mat.table[i][j]; } } return result; } Matrix operator*(const T val) { Matrix result(R, C); for (int i = 0; i < R; i++) { for (int j = 0; j < C; j++) { result[i][j] = table[i][j] * val; } } return result; } Matrix operator*(const Matrix& mat) { assert(C == mat.R); Matrix result(R, mat.C); for (int i = 0; i < R; i++) { for (int j = 0; j < mat.C; j++) { T sum = 0; for (int k = 0; k < C; k++) { sum += table[i][k] * mat[k][j]; } result[i][j] = sum; } } return result; } Matrix transposed() const { Matrix result(C, R); for (int i = 0; i < C; i++) { for (int j = 0; j < R; j++) { result[i][j] = table[j][i]; } } return result; } Matrix& transpose() { if (R == C) { for (int i = 0; i < R; i++) { for (int j = i + 1; j < R; j++) { swap(table[i][j], table[j][i]); } } return *this; } else { return *this = transposed(); } } int R; int C; vector<vector<T>> table; }; template <typename T> inline Matrix<T> operator*(const T val, const Matrix<T>& mat) { Matrix<T> result(mat.R, mat.C); for (int i = 0; i < mat.R; i++) { for (int j = 0; j < mat.C; j++) { result[i][j] = val * mat[i][j]; } } return result; } template <typename T> inline ostream& operator<<(ostream& os, const Matrix<T>& mat) { os << "Mat<" << mat.R << "," << mat.C << ">" << endl; for (int i = 0; i < mat.R; i++) { os << "["; for (int j = 0; j < mat.C; j++) { os << mat[i][j] << ","; } os << "]" << endl; } return os; } // 縦ベクトル template <typename T> struct Vector { Vector(const int n) : R(n), table(n, 0){}; T& operator[](const int n) { return table[n]; } const T& operator[](const int n) const { return table[n]; } Vector& operator+=(const Vector& v) { assert(R == v.R); for (int i = 0; i < R; i++) { table[i] += v[i]; } return *this; } Vector& operator-=(const Vector& v) { assert(R == v.R); for (int i = 0; i < R; i++) { table[i] -= v[i]; } return *this; } Vector& operator*=(const T& s) { for (int i = 0; i < R; i++) { table[i] *= s; } return *this; } Vector& operator/=(const T& s) { assert(s != 0.0); for (int i = 0; i < R; i++) { table[i] /= s; } return *this; } Vector operator+(const Vector& v) const { assert(R == v.R); Vector result(R); for (int i = 0; i < R; i++) { result[i] = table[i] + v[i]; } return result; } Vector operator-(const Vector& v) const { assert(R == v.R); Vector result(R); for (int i = 0; i < R; i++) { result[i] = table[i] - v[i]; } return result; } Vector operator*(const T& s) const { Vector result(R); for (int i = 0; i < R; i++) { result[i] = table[i] * s; } return result; } Vector operator/(const T& s) const { assert(s != 0.0); Vector result(R); for (int i = 0; i < R; i++) { result[i] = table[i] / s; } return result; } Vector operator-() const { Vector result(R); for (int i = 0; i < R; i++) { result[i] = -table[i]; } return result; } int R; vector<T> table; }; template <typename T> inline Vector<T> operator*(const T& s, const Vector<T>& v) { Vector<T> result(v.R); for (int i = 0; i < v.R; i++) { result[i] = s * v[i]; } return result; } template <typename T> inline Vector<T> operator*(const Matrix<T>& mat, const Vector<T>& v) { assert(mat.C == v.R); Vector<T> result(mat.R); for (int i = 0; i < v.R; i++) { for (int j = 0; j < mat.R; j++) { result[i] += mat[i][j] * v[j]; } } return result; } template <typename T> inline ostream& operator<<(ostream& os, const Vector<T>& v) { os << "Vec<" << v.R << ">" << endl; os << "["; for (int i = 0; i < v.R; i++) { os << v[i] << ","; } os << "]^T" << endl; return os; } template <typename T> Vector<T> GaussJordan(const Matrix<T>& mat, const Vector<T>& v) { assert(mat.R == mat.C); const int N = mat.R; Matrix<T> A(N, N + 1); for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { A[i][j] = mat[i][j]; } } for (int i = 0; i < N; i++) { A[i][N] = v[i]; } for (int i = 0; i < N; i++) { int pivot = i; for (int j = i; j < N; j++) { if (abs(A[j][i]) > abs(A[pivot][i])) { pivot = j; } } assert(A[pivot][i]); swap(A[i], A[pivot]); for (int j = i + 1; j <= N; j++) { A[i][j] /= A[i][i]; } for (int j = 0; j < N; j++) { if (i != j) { for (int k = i + 1; k <= N; k++) { A[j][k] -= A[j][i] * A[i][k]; } } } } Vector<T> res(N); for (int i = 0; i < N; i++) { res[i] = A[i][N]; } return res; } using ld = long double; int main() { int K; cin >> K; Matrix<ld> mat(K + 1, K + 1); for (int i = 0; i < K; i++) { mat[i][i] = 6; for (int j = 1; j <= 6; j++) { mat[i][(i + j <= K ? i + j : 0)]--; } } mat[K][K] = 1; Vector<ld> vec(K + 1); for (int i = 0; i < K; i++) { vec[i] = 6; } vec[K] = 0; cout << fixed << setprecision(15) << GaussJordan(mat, vec)[0] << endl; return 0; }