結果
問題 | No.658 テトラナッチ数列 Hard |
ユーザー | anta |
提出日時 | 2018-03-02 22:27:22 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 79 ms / 2,000 ms |
コード長 | 3,519 bytes |
コンパイル時間 | 2,178 ms |
コンパイル使用メモリ | 174,732 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-13 03:27:36 |
合計ジャッジ時間 | 2,796 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 28 ms
5,376 KB |
testcase_05 | AC | 33 ms
5,376 KB |
testcase_06 | AC | 41 ms
5,376 KB |
testcase_07 | AC | 44 ms
5,376 KB |
testcase_08 | AC | 51 ms
5,376 KB |
testcase_09 | AC | 79 ms
5,376 KB |
testcase_10 | AC | 77 ms
5,376 KB |
ソースコード
#include "bits/stdc++.h" using namespace std; #define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i)) #define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i)) #define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i)) static const int INF = 0x3f3f3f3f; static const long long INFL = 0x3f3f3f3f3f3f3f3fLL; typedef vector<int> vi; typedef pair<int, int> pii; typedef vector<pair<int, int> > vpii; typedef long long ll; template<typename T, typename U> static void amin(T &x, U y) { if (y < x) x = y; } template<typename T, typename U> static void amax(T &x, U y) { if (x < y) x = y; } template<int MOD> struct ModInt { static const int Mod = MOD; unsigned x; ModInt() : x(0) { } ModInt(signed sig) { int sigt = sig % MOD; if (sigt < 0) sigt += MOD; x = sigt; } ModInt(signed long long sig) { int sigt = sig % MOD; if (sigt < 0) sigt += MOD; x = sigt; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { signed a = x, b = MOD, u = 1, v = 0; while (b) { signed t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } if (u < 0) u += Mod; ModInt res; res.x = (unsigned)u; return res; } bool operator==(ModInt that) const { return x == that.x; } bool operator!=(ModInt that) const { return x != that.x; } ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; } }; typedef ModInt<17> mint; mint linearlyRecurrentSequenceValue(long long K, const vector<mint> &initValues, const vector<mint> &annPoly) { assert(K >= 0); if (K < (int)initValues.size()) return initValues[(int)K]; int d = (int)annPoly.size() - 1; assert(d >= 0); assert(annPoly[d].get() == 1); assert(d <= (int)initValues.size()); if (d == 0) return mint(); vector<mint> coeffs(d), square; coeffs[0] = 1; int l = 0; while ((K >> l) > 1) ++ l; for (; l >= 0; -- l) { square.assign(d * 2 - 1, mint()); for (int i = 0; i < d; ++ i) for (int j = 0; j < d; ++ j) square[i + j] += coeffs[i] * coeffs[j]; for (int i = d * 2 - 2; i >= d; -- i) { mint c = square[i]; if (c.x == 0) continue; for (int j = 0; j < d; ++ j) square[i - d + j] -= c * annPoly[j]; } for (int i = 0; i < d; ++ i) coeffs[i] = square[i]; if (K >> l & 1) { mint lc = coeffs[d - 1]; for (int i = d - 1; i >= 1; -- i) coeffs[i] = coeffs[i - 1] - lc * annPoly[i]; coeffs[0] = mint() - lc * annPoly[0]; } } mint res; for (int i = 0; i < d; ++ i) res += coeffs[i] * initValues[i]; return res; } mint linearlyRecurrentSequenceValue(long long K, const pair<vector<mint>, vector<mint> > &seqPair) { return linearlyRecurrentSequenceValue(K, seqPair.first, seqPair.second); } int main() { int Q; while (~scanf("%d", &Q)) { rep(i, Q) { long long n; scanf("%lld", &n); mint ans = linearlyRecurrentSequenceValue(n, { { 0, 0, 0, 0, 1 },{ 0, -1, -1, -1, -1, 1 } }); printf("%d\n", ans.get()); } } return 0; }