結果
| 問題 |
No.660 家を通り過ぎないランダムウォーク問題
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2018-03-03 00:08:21 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 9,455 bytes |
| コンパイル時間 | 12,216 ms |
| コンパイル使用メモリ | 275,980 KB |
| 最終ジャッジ日時 | 2025-01-05 09:02:51 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | TLE * 45 |
ソースコード
#pragma GCC optimize ("O3")
#pragma GCC target ("avx")
#include "bits/stdc++.h" // define macro "/D__MAI"
using namespace std;
typedef long long int ll;
#define debug(v) {printf("L%d %s > ",__LINE__,#v);cout<<(v)<<endl;}
#define debugv(v) {printf("L%d %s > ",__LINE__,#v);for(auto e:(v)){cout<<e<<" ";}cout<<endl;}
#define debuga(m,w) {printf("L%d %s > ",__LINE__,#m);for(int x=0;x<(w);x++){cout<<(m)[x]<<" ";}cout<<endl;}
#define debugaa(m,h,w) {printf("L%d %s >\n",__LINE__,#m);for(int y=0;y<(h);y++){for(int x=0;x<(w);x++){cout<<(m)[y][x]<<" ";}cout<<endl;}}
#define ALL(v) (v).begin(),(v).end()
#define repeat(cnt,l) for(auto cnt=0ll;(cnt)<(l);++(cnt))
#define rrepeat(cnt,l) for(auto cnt=(l)-1;0<=(cnt);--(cnt))
#define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt))
#define diterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);--(cnt))
#define MD 1000000007ll
#define PI 3.1415926535897932384626433832795
template<typename T1, typename T2> ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << "(" << p.first << ":" << p.second << ")"; return o; }
template<typename T> T& maxset(T& to, const T& val) { return to = max(to, val); }
template<typename T> T& minset(T& to, const T& val) { return to = min(to, val); }
void bye(string s, int code = 0) { cout << s << endl; exit(code); }
mt19937_64 randdev(8901016);
inline ll rand_range(ll l, ll h) {
return uniform_int_distribution<ll>(l, h)(randdev);
}
#if defined(_WIN32) || defined(_WIN64)
#define getchar_unlocked _getchar_nolock
#define putchar_unlocked _putchar_nolock
#elif defined(__GNUC__)
#else
#define getchar_unlocked getchar
#define putchar_unlocked putchar
#endif
namespace {
#define isvisiblechar(c) (0x21<=(c)&&(c)<=0x7E)
class MaiScanner {
public:
template<typename T> void input_integer(T& var) {
var = 0; T sign = 1;
int cc = getchar_unlocked();
for (; cc<'0' || '9'<cc; cc = getchar_unlocked())
if (cc == '-') sign = -1;
for (; '0' <= cc && cc <= '9'; cc = getchar_unlocked())
var = (var << 3) + (var << 1) + cc - '0';
var = var * sign;
}
inline int c() { return getchar_unlocked(); }
inline MaiScanner& operator>>(int& var) { input_integer<int>(var); return *this; }
inline MaiScanner& operator>>(long long& var) { input_integer<long long>(var); return *this; }
inline MaiScanner& operator>>(string& var) {
int cc = getchar_unlocked();
for (; !isvisiblechar(cc); cc = getchar_unlocked());
for (; isvisiblechar(cc); cc = getchar_unlocked())
var.push_back(cc);
return *this;
}
template<typename IT> void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; }
};
class MaiPrinter {
public:
template<typename T>
void output_integer(T var) {
if (var == 0) { putchar_unlocked('0'); return; }
if (var < 0)
putchar_unlocked('-'),
var = -var;
char stack[32]; int stack_p = 0;
while (var)
stack[stack_p++] = '0' + (var % 10),
var /= 10;
while (stack_p)
putchar_unlocked(stack[--stack_p]);
}
inline MaiPrinter& operator<<(char c) { putchar_unlocked(c); return *this; }
inline MaiPrinter& operator<<(int var) { output_integer<int>(var); return *this; }
inline MaiPrinter& operator<<(long long var) { output_integer<long long>(var); return *this; }
inline MaiPrinter& operator<<(char* str_p) { while (*str_p) putchar_unlocked(*(str_p++)); return *this; }
inline MaiPrinter& operator<<(const string& str) {
const char* p = str.c_str();
const char* l = p + str.size();
while (p < l) putchar_unlocked(*p++);
return *this;
}
template<typename IT> void join(IT begin, IT end, char sep = '\n') { for (auto it = begin; it != end; ++it) *this << *it << sep; }
};
}
MaiScanner scanner;
MaiPrinter printer;
template<typename T>
// typedef double T;
class Matrix {
public:
size_t height_, width_;
valarray<T> data_;
Matrix(size_t height, size_t width) :height_(height), width_(width), data_(height*width) {}
Matrix(size_t height, size_t width, const valarray<T>& data) :height_(height), width_(width), data_(data) {}
inline T& operator()(size_t y, size_t x) { return data_[y*width_ + x]; }
inline T operator() (size_t y, size_t x) const { return data_[y*width_ + x]; }
inline T& at(size_t y, size_t x) { return data_[y*width_ + x]; }
inline T at(size_t y, size_t x) const { return data_[y*width_ + x]; }
inline void resize(size_t h, size_t w) { height_ = h; width_ = w; data_.resize(h*w); }
inline void resize(size_t h, size_t w, T val) { height_ = h; width_ = w; data_.resize(h*w, val); }
inline void fill(T val) { data_ = val; }
Matrix<T>& setDiag(T val) { for (size_t i = 0, en = min(width_, height_); i < en; ++i)at(i, i) = val; return *this; }
void print(ostream& os) {
os << "- - -" << endl; // << setprecision(3)
for (size_t y = 0; y < height_; ++y) {
for (size_t x = 0; x < width_; ++x) {
os << setw(7) << at(y, x) << ' ';
}os << endl;
}
}
valarray<valarray<T>> to_valarray() const {
valarray<valarray<T>> work(height_);
for (size_t i = 0; i < height_; ++i) {
auto &v = work[i]; v.resize(height_);
for (size_t j = 0; j < width_; ++j)
v[j] = at(i, j);
} return work;
}
// mathematics
Matrix<T> pow(long long);
double det() const; T tr();
Matrix<T>& transpose_self(); Matrix<T> transpose() const;
struct LU {
size_t size;
vector<int> pivot;
vector<T> elem;
};
};
// IO
template<typename T> inline ostream& operator << (ostream& os, Matrix<T> mat) { mat.print(os); return os; }
// 掛け算
template<typename T> Matrix<T> multiply(const Matrix<T>& mat1, const Matrix<T>& mat2) {
assert(mat1.width_ == mat2.height_);
Matrix<T> result(mat1.height_, mat2.width_);
for (size_t i = 0; i < mat1.height_; i++) {
for (size_t j = 0; j < mat2.width_; j++) {
for (size_t k = 0; k < mat1.width_; k++) {
result(i, j) += mat1(i, k) * mat2(k, j);
}
}
}
return result;
}
template<typename T> valarray<T> multiply(const Matrix<T>& mat1, const valarray<T>& vec2) {
assert(mat1.width_ == vec2.size());
valarray<T> result(mat1.height_);
for (size_t i = 0, j; i < mat1.height_; i++) {
for (j = 0; j < mat1.width_; j++) {
result[i] += mat1(i, j) * vec2[j];
}
}
return result;
}
template<typename T> inline Matrix<T>& operator*=(Matrix<T>& mat1, Matrix<T>& mat2) { mat1 = multiply(mat1, mat2); return mat1; }
template<typename T> inline Matrix<T> operator*(Matrix<T>& mat1, Matrix<T>& mat2) { return multiply(mat1, mat2); }
// スカラー
template<typename T> inline Matrix<T>& operator+=(Matrix<T>& mat, T val) { mat.data_ += val; return mat; }
template<typename T> inline Matrix<T>& operator*=(Matrix<T>& mat, T val) { mat.data_ *= val; return mat; }
template<typename T> inline Matrix<T>& operator/=(Matrix<T>& mat, T val) { mat.data_ /= val; return mat; }
template<typename T> inline Matrix<T>& operator^=(Matrix<T>& mat, T val) { mat.data_ ^= val; return mat; }
// 行列
template<typename T> inline Matrix<T>& operator+=(Matrix<T>& mat1, Matrix<T>& mat2) { mat1.data_ += mat2.data_; return mat1; }
template<typename T> inline Matrix<T> operator+(Matrix<T>& mat1, Matrix<T>& mat2) { return Matrix<T>(mat1.height_, mat1.width_, mat1.data_ + mat2.data_); }
template<typename T> Matrix<T> Matrix<T>::pow(long long p) {
assert(height_ == width_);
Matrix<T> a = *this;
Matrix<T> b(height_, height_); b.setDiag(1);
while (0 < p) {
if (p % 2) {
b *= a;
}
a *= a; p /= 2;
}
return b;
}
int height, width, turn;
int starty, startx, goaly, goalx;
int field[10][10];
int main() {
scanner >> height >> width >> turn;
scanner >> starty >> startx >> goaly >> goalx;
Matrix<double> matF(81, 81);
repeat(i, height) {
string line;
scanner >> line;
repeat(j, width) {
field[i][j] = line[j] == '.';
}
}
repeat(i, 10) {
repeat(j, 10) {
if (!field[i][j]) continue;
int id = i * 10 + j - 11;
double sum
= field[i - 1][j]
+ field[i + 1][j]
+ field[i][j - 1]
+ field[i][j + 1];
if (sum == 0) {
matF(id, id) = 1.0;
continue;
}
if (field[i - 1][j])
matF(id - 10, id) = 1.0 / sum;
if (field[i + 1][j])
matF(id + 10, id) = 1.0 / sum;
if (field[i][j - 1])
matF(id - 1, id) = 1.0 / sum;
if (field[i][j + 1])
matF(id + 1, id) = 1.0 / sum;
}
}
auto matFt = matF.pow(turn);
Matrix<double> vec1(81, 1);
vec1(starty * 10 + startx - 1 - 11, 1) = 1.0;
auto vect = matFt * vec1;
double ans = vect(goaly * 10 + goalx - 1 - 11, 1);
printf("%.10f\n", ans);
return 0;
}