結果
問題 | No.616 へんなソート |
ユーザー |
![]() |
提出日時 | 2018-03-29 15:02:46 |
言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 232 ms / 2,000 ms |
コード長 | 1,918 bytes |
コンパイル時間 | 826 ms |
コンパイル使用メモリ | 105,088 KB |
実行使用メモリ | 310,148 KB |
最終ジャッジ日時 | 2024-06-25 23:47:21 |
合計ジャッジ時間 | 2,822 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 27 |
ソースコード
# include <iostream># include <algorithm># include <vector># include <string># include <set># include <map># include <cmath># include <iomanip># include <functional># include <utility># include <stack># include <queue># include <list># include <tuple># include <unordered_map># include <numeric># include <complex># include <bitset># include <random># include <chrono>using namespace std;using LL = long long;using ULL = unsigned long long;constexpr int INF = 2147483647;constexpr int HINF = INF / 2;constexpr double DINF = 100000000000000000.0;constexpr double HDINF = 50000000000000000.0;constexpr long long LINF = 9223372036854775807;constexpr long long HLINF = 4500000000000000000;const double PI = acos(-1);int dx[4] = { 0,1,0,-1 }, dy[4] = { 1,0,-1,0 };template <typename T_char>T_char TL(T_char cX) { return tolower(cX); };template <typename T_char>T_char TU(T_char cX) { return toupper(cX); };# define ALL(x) (x).begin(),(x).end()# define UNIQ(c) (c).erase(unique(ALL((c))),(c).end())# define LOWER(s) transform(ALL((s)),(s).begin(),TL<char>)# define UPPER(s) transform(ALL((s)),(s).begin(),TU<char>)# define mp make_pair# define eb emplace_back# define FOR(i,a,b) for(LL i=(a);i<(b);i++)# define RFOR(i,a,b) for(LL i=(a);i>=(b);i--)# define REP(i,n) FOR(i,0,n)# define INIT std::ios::sync_with_stdio(false);std::cin.tie(0)LL dp[330][101010], sum[330][101010];const int MOD = 1e9 + 7;int main() {int n, k; cin >> n >> k;int a;REP(i, n) cin >> a;dp[0][0] = 1;REP(j, k + 1) sum[0][j] = 1LL;for (LL i = 1; i < n; i++) {REP(j, k + 1) {if (min(i, j) <= j - 1) dp[i][j] = (sum[i - 1][j] - sum[i - 1][j - min(i, j) - 1] + MOD) % MOD;else dp[i][j] = sum[i - 1][j];}sum[i][0] = 1LL;for (int j = 1; j < k + 1; j++) sum[i][j] = (sum[i][j - 1] + dp[i][j]) % MOD;}cout << sum[n - 1][k] << endl;}