結果
問題 | No.8039 April Fool Tekitou |
ユーザー |
![]() |
提出日時 | 2018-04-01 23:51:47 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 33 ms / 2,000 ms |
コード長 | 9,174 bytes |
コンパイル時間 | 93 ms |
コンパイル使用メモリ | 12,416 KB |
実行使用メモリ | 10,496 KB |
最終ジャッジ日時 | 2024-06-26 06:28:10 |
合計ジャッジ時間 | 532 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 1 |
ソースコード
print(20170387916)'''// sniplate: headers// {{{ template// clang-format off#include <iostream>#include <algorithm>#include <bitset>#include <map>#include <queue>#include <set>#include <stack>#include <string>#include <utility>#include <vector>#include <array>#include <unordered_map>#include <complex>#include <deque>#include <cassert>#include <cmath>#include <functional>#include <iomanip>#include <chrono>#include <random>#include <numeric>#include <tuple>#include <cstring>using namespace std;#define forr(x,arr) for(auto&& x:arr)#define _overload3(_1,_2,_3,name,...) name#define _rep2(i,n) _rep3(i,0,n)#define _rep3(i,a,b) for(int i=int(a);i<int(b);++i)#define rep(...) _overload3(__VA_ARGS__,_rep3,_rep2,)(__VA_ARGS__)#define _rrep2(i,n) _rrep3(i,0,n)#define _rrep3(i,a,b) for(int i=int(b)-1;i>=int(a);i--)#define rrep(...) _overload3(__VA_ARGS__,_rrep3,_rrep2,)(__VA_ARGS__)#define all(x) (x).begin(),(x).end()#define bit(n) (1LL<<(n))#define sz(x) ((int)(x).size())#define TEN(n) ((ll)(1e##n))#define fst first#define snd secondstring DBG_DLM(int &i){return(i++==0?"":", ");}#define DBG_B(exp){int i=0;os<<"{";{exp;}os<<"}";return os;}template<class T>ostream&operator<<(ostream&os,vector<T>v);template<class T>ostream&operator<<(ostream&os,set<T>v);template<class T>ostream&operator<<(ostream&os,queue<T>q);template<class T>ostream&operator<<(ostream&os,priority_queue<T>q);template<class T,class K>ostream&operator<<(ostream&os,pair<T,K>p);template<class T,class K>ostream&operator<<(ostream&os,map<T,K>mp);template<class T,class K>ostream&operator<<(ostream&os,unordered_map<T,K>mp);template<int I,class TPL>void DBG(ostream&os,TPL t){}template<int I,class TPL,class H,class...Ts>void DBG(ostream&os,TPL t){os<<(I==0?"":", ")<<get<I>(t);DBG<I+1,TPL,Ts...>(os,t);}template<class T,class K>void DBG(ostream&os,pair<T,K>p,string delim){os<<"("<<p.first<<delim<<p.second<<")";}template<class...Ts>ostream&operator<<(ostream&os,tuple<Ts...>t){os<<"(";DBG<0,tuple<Ts...>,Ts...>(os,t);os<<")";return os;}template<class T,class K>ostream&operator<<(ostream&os,pair<T,K>p){DBG(os,p,", ");return os;}template<class T>ostream&operator<<(ostream&os,vector<T>v){DBG_B(forr(t,v){os<<DBG_DLM(i)<<t;});}template<class T>ostream&operator<<(ostream&os,set<T>s){DBG_B(forr(t,s){os<<DBG_DLM(i)<<t;});}template<class T>ostream&operator<<(ostream&os,queue<T>q){DBG_B(for(;q.size();q.pop()){os<<DBG_DLM(i)<<q.front();});}template<class T>ostream&operator<<(ostream&os,priority_queue<T>q){DBG_B(for(;q.size();q.pop()){os<<DBG_DLM(i)<<q.top();});}template<class T,class K>ostream&operator<<(ostream&os,map<T,K>m){DBG_B(forr(p,m){os<<DBG_DLM(i);DBG(os,p,"->");});}template<class T,class K>ostream&operator<<(ostream&os,unordered_map<T,K>m){DBG_B(forr(p,m){os<<DBG_DLM(i);DBG(os,p,"->");});}#define DBG_OVERLOAD(_1,_2,_3,_4,_5,_6,macro_name,...)macro_name#define DBG_LINE(){char s[99];sprintf(s,"line:%3d | ",__LINE__);cerr<<s;}#define DBG_OUTPUT(v){cerr<<(#v)<<"="<<(v);}#define DBG1(v,...){DBG_OUTPUT(v);}#define DBG2(v,...){DBG_OUTPUT(v);cerr<<", ";DBG1(__VA_ARGS__);}#define DBG3(v,...){DBG_OUTPUT(v);cerr<<", ";DBG2(__VA_ARGS__);}#define DBG4(v,...){DBG_OUTPUT(v);cerr<<", ";DBG3(__VA_ARGS__);}#define DBG5(v,...){DBG_OUTPUT(v);cerr<<", ";DBG4(__VA_ARGS__);}#define DBG6(v,...){DBG_OUTPUT(v);cerr<<", ";DBG5(__VA_ARGS__);}#define DEBUG0(){DBG_LINE();cerr<<endl;}#ifdef LOCAL#define out(...){DBG_LINE();DBG_OVERLOAD(__VA_ARGS__,DBG6,DBG5,DBG4,DBG3,DBG2,DBG1)(__VA_ARGS__);cerr<<endl;}#else#define out(...)#endifusing ll=long long;using pii=pair<int,int>;using pll=pair<ll,ll>;using pil=pair<int,ll>;using pli=pair<ll,int>;using vs=vector<string>;using vvs=vector<vs>;using vvvs=vector<vvs>;using vb=vector<bool>;using vvb=vector<vb>;using vvvb=vector<vvb>;using vi=vector<int>;using vvi=vector<vi>;using vvvi=vector<vvi>;using vl=vector<ll>;using vvl=vector<vl>;using vvvl=vector<vvl>;using vd=vector<double>;using vvd=vector<vd>;using vvvd=vector<vvd>;using vpii=vector<pii>;using vvpii=vector<vpii>;using vvvpii=vector<vvpii>;template<class A,class B>bool amax(A&a,const B&b){return b>a?a=b,1:0;}template<class A,class B>bool amin(A&a,const B&b){return b<a?a=b,1:0;}ll ri(){ll l;cin>>l;return l;} string rs(){string s;cin>>s;return s;}// clang-format on// }}}vi D = {24,24,4,16,80,12,32,16,24,12,96,8,32,4,96,2,48,16,4,80,24,16,16,8,48,32,8,2,48,8,16,16,12,4,48,8,60,24,8,8,48,4,8,16,16,4,64,8,12,32,8,2,160,4,96,12,12,4,64,6,8,16,16,24,72,4,8,16,10,16,32,16,12,16,8,4,64,32,16,32,48,8,12,2,192,4,8,8,48,16,4,24,16,8,32,6,24,32,16,4};// sniplate: is_probable_prime/// n <= 2^20(10^6) 以下では試し割りの方が早いtemplate <class BinOp> bool is_prime_impl(const uint64_t &n, const uint64_t *witness, BinOp modmul) {if (n == 2) return true;if (n < 2 || n % 2 == 0) return false;const int64_t m = n - 1, d = m / (m & -m);auto modpow = [&](int64_t a, int64_t b) {int64_t res = 1;for (; b; b /= 2) {if (b & 1) res = modmul(res, a);a = modmul(a, a);}return res;};auto suspect = [&](uint64_t a, uint64_t t) {a = modpow(a, t);while (t != n - 1 && a != 1 && a != n - 1) {a = modmul(a, a);t = modmul(t, 2);}return a == n - 1 || t % 2 == 1;};for (const uint64_t *w = witness; *w; w++) {if (*w % n != 0 && !suspect(*w, d)) return false;}return true;}bool is_probable_prime(const uint64_t &n) {assert(n < (1ULL << 63));if (n < (1ULL << 32)) {/// n < 2^32constexpr uint64_t witness[] = {2, 7, 61, 0};auto modmul = [&](uint64_t a, uint64_t b) -> uint64_t { return a * b % n; };return is_prime_impl(n, witness, modmul);}else {/// n < 2^63constexpr uint64_t witness[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022, 0};/// if u128 is availableauto modmul = [&](uint64_t a, uint64_t b) -> uint64_t { return (uint64_t)((__uint128_t)a * b % n); };// otherwise// auto modmul = [&](uint64_t a, uint64_t b) {// uint64_t res = 0;// for (; b; b /= 2) {// if (b & 1) res = (res + a) % n;// a = (a + a) % n;// }// return res;// };return is_prime_impl(n, witness, modmul);}}// sniplate: sieve/// O(n log log n)/// [2, n)vector<bool> sieve(int n) {vector<bool> flg(n, 1);for (int i = 0; i < 2; i++) {flg[i] = false;}for (int j = 4; j < n; j += 2) {flg[j] = false;}int lim = int(sqrt(n)) + 1;for (int i = 3; i < lim; i += 2) {if (flg[i]) {for (int j = i * i; j < n; j += i * 2) {flg[j] = 0;}}}return flg;}// sniplate: primes/// O(n log log n)/// [2, n)vector<int> primes(int n) {vector<int> ret;if (n <= 2) return ret;ret.emplace_back(2);vector<bool> flg = sieve(n);for (int i = 3; i < n; i += 2) {if (flg[i]) ret.emplace_back(i);}return ret;}// sniplate: number_of_divisors/// primes に pow(x, 1.0/3) 以下の素数の一覧を入れておくこと/// isPrime は x 以下に対応できるものを使うこと(sqrt3(x)以下ではない)/// O(sqrt3(x))int number_of_divisors(int64_t x, const vector<int> &primes) {int ret = 1;for (int64_t p : primes) {if (p * p * p > x) break;int count = 1;while (x % p == 0) {x /= p;count++;}ret *= count;}if (is_probable_prime(x)) ret *= 2;else {int rx = sqrt(x);if (rx * rx == x && is_probable_prime(rx)) {ret *= 3;}else if (x != 1) {ret *= 4;}}return ret;}// sniplate: templatevoid Main() {out(D);/*i=36, D[i]=60i=68, D[i]=10*/rep(i, 100) out(i, D[i]);map<int, int> M;rep(i, 100) M[D[i]]++;out(M);auto P4 = primes(pow(3e10/16, 1.0/4)+1);auto P3 = primes(pow(3e10/32, 1.0/3)+1);auto P2 = primes(pow(3e10/64, 1.0/2)+1);int s4 = sz(P4);int s3 = sz(P3);int s2 = sz(P2);out(P3);auto P1 = primes(3e10/144+1);int s1 = sz(P1);out(s1,s2,s3,s4);auto Q = primes(pow(3e10, 1.0/3)+1);constexpr ll LIM = 30000000000LL;auto check36 = [&](ll z) {if (number_of_divisors(z - 36 + 68, Q) != 10) return false;if (number_of_divisors(z - 36 + 52, Q) != 160) return false;if (number_of_divisors(z - 36 + 84, Q) != 192) return false;if (number_of_divisors(z - 36 + 19, Q) != 80) return false;if (number_of_divisors(z - 36 + 4, Q) != 80) return false;rep(a, 100) {if (number_of_divisors(z-36+a, Q) != D[a]) {return false;}}return true;};rep(i, s4) {ll p4 = P4[i];rep(j, s2) {ll p2 = P2[j];if (p2 == p4) continue;ll x = p2 * p2 * p4 * p4 * p4 * p4;rrep(k, s1) {ll p1k = P1[k];if (p1k == p2 || p1k == p4) continue;rep(l, k+1, s1) {ll p1l = P1[l];if (p1l == p2 || p1l == p4) continue;ll y = p1k * p1l;if (x >= LIM / y) break;ll z = x * y;if (check36(z)) {out(z-36);return;}}}rep(k, s3) {ll p3 = P3[k];if (p3 == p2 || p3 == p4) continue;ll y = p3 * p3 * p3;if (x >= LIM / y) break;ll z = x * y;if (check36(z)) {out(z-36);return;}}}}}signed main() {cin.tie(nullptr);ios::sync_with_stdio(false);Main();return 0;}'''