結果
| 問題 |
No.655 E869120 and Good Triangles
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2018-04-18 15:51:04 |
| 言語 | D (dmd 2.109.1) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,627 bytes |
| コンパイル時間 | 682 ms |
| コンパイル使用メモリ | 108,172 KB |
| 実行使用メモリ | 221,500 KB |
| 最終ジャッジ日時 | 2024-06-13 00:36:56 |
| 合計ジャッジ時間 | 23,504 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 21 WA * 3 RE * 6 |
ソースコード
import std.algorithm, std.container, std.conv, std.math, std.range, std.typecons, std.stdio, std.string;
void readV(T...)(ref T t){auto r=readln.splitter;foreach(ref v;t){v=r.front.to!(typeof(v));r.popFront;}}
void readS(T)(size_t n,ref T t){t=new T(n);foreach(ref v;t){auto r=readln.splitter;foreach(ref j;v.tupleof){j=r.front.to!(typeof(j));r.popFront;}}}
alias point = Point!int;
void main()
{
int n, k, p; readV(n, k, p);
point[] b; readS(k, b);
foreach (ref bi; b) { --bi.x; --bi.y; }
if (n == 1) {
writeln(0);
return;
}
auto a = kaidan!int(n);
foreach (i; 0..n) a[i][] = -1;
auto q = DList!point(b), dp = [point(-1, -1), point(-1, 0), point(0, -1), point(0, 1), point(1, 0), point(1, 1)];
foreach (ref bi; b) a[bi.x][bi.y] = 0;
while (!q.empty) {
auto pp = q.front; q.removeFront;
foreach (dpi; dp) {
auto np = pp + dpi;
if (np.x < 0 || np.x >= n || np.y < 0 || np.y > np.x || a[np.x][np.y] >= 0) continue;
a[np.x][np.y] =a[pp.x][pp.y] + 1;
q.insertBack(np);
}
}
auto as = kaidan!int(n+1);
foreach_reverse (i; 0..n)
foreach (j; 0..i+1) {
as[i][j] = as[i+1][j] + as[i+1][j+1] + a[i][j];
if (i < n-1) as[i][j] -= as[i+2][j+1];
}
auto bs = kaidan!int(n+1);
foreach (i; 0..n+1) bs[i] ~= 0;
foreach_reverse (i; 0..n)
foreach (j; 0..i+1)
bs[i][j+1] = bs[i][j]+bs[i+1][j+1]-bs[i+1][j]+a[i][j];
auto calc(int i, int j, int e)
{
return as[i][j] - as[i+e+1][j+e+1] - bs[i+e+1][j+e+1] + bs[i+e+1][j];
}
auto e = kaidan!int(n-1);
foreach (j; 0..n-1) e[n-2][j] = as[n-2][j] >= p ? 1 : 2;
foreach_reverse (i; 0..n-2)
foreach (j; 0..i+1) {
auto r = min(e[i+1][j], e[i+1][j+1]);
while (calc(i, j, r) >= p && r >= 1) --r;
e[i][j] = r+1;
}
auto ans = 0L;
foreach (i; 0..n-1)
foreach (j; 0..i+1)
ans += n-(e[i][j]+i);
writeln(ans);
}
auto kaidan(T)(int n)
{
auto a = new T[][](n);
foreach (i; 0..n) a[i] = new T[](i+1);
return a;
}
struct Point(T)
{
T x, y;
pure auto opBinary(string op)(Point!T r) if (op == "+" || op == "-") { return mixin("Point!T(x"~op~"r.x,y"~op~"r.y)"); }
pure auto opBinary(string op)(T a) if (op == "*" || op == "/") { return mixin("Point!T(x"~op~"a,y"~op~"a)"); }
auto opOpAssign(string op)(Point!T r) if (op == "+" || op == "-") { mixin("x"~op~"=r.x; y"~op~"=r.y;"); return this; }
auto opOpAssign(string op)(T a) if (op == "*" || op == "/") { mixin("x"~op~"=a; y"~op~"=a;"); return this; }
pure auto opBinary(string op: "*")(Point!T r) { return x*r.x + y*r.y; }
pure auto hypot2() const { return x^^2 + y^^2; }
}