結果
| 問題 |
No.75 回数の期待値の問題
|
| ユーザー |
kei
|
| 提出日時 | 2018-04-26 22:10:10 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,325 bytes |
| コンパイル時間 | 1,732 ms |
| コンパイル使用メモリ | 174,220 KB |
| 実行使用メモリ | 6,948 KB |
| 最終ジャッジ日時 | 2024-06-27 21:14:43 |
| 合計ジャッジ時間 | 3,788 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 WA * 3 |
| other | WA * 8 RE * 8 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
const int INF = 1e9;
const ll LINF = 1e18;
template<class S,class T> ostream& operator << (ostream& out,const pair<S,T>& o){ out << "(" << o.first << "," << o.second << ")"; return out; }
template<class T> ostream& operator << (ostream& out,const vector<T> V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << " ";} return out; }
template<class T> ostream& operator << (ostream& out,const vector<vector<T> > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; }
template<class S,class T> ostream& operator << (ostream& out,const map<S,T> mp){ out << "{ "; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << ":" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << ", "; } out << " }"; return out; }
/*
<url:https://yukicoder.me/problems/no/75>
問題文============================================================
1個のサイコロを何回か振って目の合計をちょうどKにしたい。
もしKを超えてしまったら合計を0にリセットする。
ただしサイコロを振った回数はリセットされない。
例えば、K=5のときサイコロを1回振って6が出たとする。
この場合はKを超えてしまったので合計を0に戻し2回目を振ることになる。
サイコロは目の合計がちょうどKになるまで振り続ける。
サイコロを振る回数の期待値を求めよ。
=================================================================
解説=============================================================
================================================================
*/
template<typename T>
vector<T> gauss_jordan(const vector<vector<T>>& A, const vector<T>& b) {
const double EPS = 1e-9; int n = (int)A.size();
vector<vector<T>> B(n, vector<T>(n + 1));
for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) B[i][j] = A[i][j];
for (int i = 0; i < n; i++) B[i][n] = b[i];
for (int i = 0; i < n; i++) {
int pivot = i;
for (int j = i; j < n; j++) {if (abs(B[i][j]) > abs(B[pivot][i]))pivot = j; }
swap(B[i], B[pivot]);
if (abs(B[i][i]) < EPS) { //解がないか一意でない
cerr << "error be." << endl; return vector<T>();
}
for (int j = i + 1; j <= n; j++)B[i][j] /= B[i][i];
for (int j = 0; j < n; j++) {
if (i != j) {
for (int k = i + 1; k <= n; k++) B[j][k] -= B[j][i] * B[i][k];
}
}
}
vector<T> x(n);//解
for (int i = 0; i < n; i++) x[i] = B[i][n];
return x;//veci.
}
double solve(int K){
double res = 0;
vector<vector<double>> A(K+1,vector<double>(K+1,0));
vector<double> b(K+1,0);
for(int i = 0; i < K;i++){
A[i][i] = 6.0;
for(int j = 1; j <= 6; j++){
if(i+j<=K) A[i][j+j]--;
else A[i][0]--;
}
b[i] = 6;
}
A[K][K] = 1;
auto E = gauss_jordan(A,b);
res = E[0];
return res;
}
int main(void) {
cin.tie(0); ios_base::sync_with_stdio(false);
int K; cin >> K;
cout << fixed << setprecision(12) << solve(K) << endl;
return 0;
}
kei