結果
| 問題 |
No.681 Fractal Gravity Glue
|
| コンテスト | |
| ユーザー |
anta
|
| 提出日時 | 2018-04-27 23:25:45 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 2,437 bytes |
| コンパイル時間 | 1,528 ms |
| コンパイル使用メモリ | 167,516 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-06-27 22:18:59 |
| 合計ジャッジ時間 | 2,232 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 20 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
template<int MOD>
struct ModInt {
static const int Mod = MOD;
unsigned x;
ModInt() : x(0) { }
ModInt(signed sig) { int sigt = sig % MOD; if (sigt < 0) sigt += MOD; x = sigt; }
ModInt(signed long long sig) { int sigt = sig % MOD; if (sigt < 0) sigt += MOD; x = sigt; }
int get() const { return (int)x; }
ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
ModInt inverse() const {
signed a = x, b = MOD, u = 1, v = 0;
while (b) {
signed t = a / b;
a -= t * b; std::swap(a, b);
u -= t * v; std::swap(u, v);
}
if (u < 0) u += Mod;
ModInt res; res.x = (unsigned)u;
return res;
}
bool operator==(ModInt that) const { return x == that.x; }
bool operator!=(ModInt that) const { return x != that.x; }
ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }
};
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {
ModInt<MOD> r = 1;
while (k) {
if (k & 1) r *= a;
a *= a;
k >>= 1;
}
return r;
}
typedef ModInt<1000000007> mint;
mint solve1(int b, int d) {
return ((mint(d + 1) ^ b) + ((mint(d + 1) ^ b) - b - 1) * d - 1) / d;
}
int solve2(int b, int d) {
static const int INF = 0x3f3f3f3f;
long long sum = 0;
long long p = 1;
for (int i = b; i >= 1; -- i) {
sum += p * d;
if (sum > INF) return INF;
p *= d + 1;
}
return (int)sum;
}
mint solve3(int n, int b, int d) {
if (b == 1) return n;
int x = solve2(b - 1, d);
int q = min(n / (x + 1), d);
int r = n - q * (x + 1);
mint sum;
sum += (solve1(b - 1, d) + b) * q;
sum += solve3(min(r, x), b - 1, d);
return sum;
}
int main() {
int n; int b; int d;
while (~scanf("%d%d%d", &n, &b, &d)) {
//a(b,d) = a(b-1,d) * (d+1) + b*d
//\sum_{i=1}^b i*(d+1)^(b-1)*d
mint ans = solve1(b, d);
ans -= solve3(n, min(b, 100), d);
printf("%d\n", ans.get());
}
}
anta