結果
| 問題 |
No.206 数の積集合を求めるクエリ
|
| コンテスト | |
| ユーザー |
anta
|
| 提出日時 | 2015-05-08 23:10:11 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 86 ms / 7,000 ms |
| コード長 | 5,587 bytes |
| コンパイル時間 | 746 ms |
| コンパイル使用メモリ | 84,364 KB |
| 実行使用メモリ | 5,504 KB |
| 最終ジャッジ日時 | 2024-07-05 20:01:55 |
| 合計ジャッジ時間 | 3,169 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 28 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:174:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
174 | scanf("%d%d%d", &L, &M, &N);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~~
main.cpp:180:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
180 | scanf("%d", &a), -- a;
| ~~~~~^~~~~~~~~~
main.cpp:185:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
185 | scanf("%d", &b), -- b;
| ~~~~~^~~~~~~~~~
main.cpp:190:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
190 | scanf("%d", &Q);
| ~~~~~^~~~~~~~~~
ソースコード
#include <string>
#include <vector>
#include <algorithm>
#include <numeric>
#include <set>
#include <map>
#include <queue>
#include <iostream>
#include <sstream>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <cctype>
#include <cassert>
#include <limits>
#include <functional>
#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))
#define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i))
#define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i))
#if defined(_MSC_VER) || __cplusplus > 199711L
#define aut(r,v) auto r = (v)
#else
#define aut(r,v) __typeof(v) r = (v)
#endif
#define each(it,o) for(aut(it, (o).begin()); it != (o).end(); ++ it)
#define all(o) (o).begin(), (o).end()
#define pb(x) push_back(x)
#define mp(x,y) make_pair((x),(y))
#define mset(m,v) memset(m,v,sizeof(m))
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3fLL
using namespace std;
typedef vector<int> vi; typedef pair<int,int> pii; typedef vector<pair<int,int> > vpii; typedef long long ll;
template<typename T, typename U> inline void amin(T &x, U y) { if(y < x) x = y; }
template<typename T, typename U> inline void amax(T &x, U y) { if(x < y) x = y; }
struct MontgomeryModInt {
static const int Mod = 998244353;
static const int W = 32;
static const int R = (1ULL << W) % Mod; //= 2^W
static const int InvR = 232013824; //= R^{-1} (mod Mod)
static const int InvNegMod = 998244351; //= (-Mod)^{-1} (mod R)
#if defined(_MSC_VER) || __cplusplus > 199711L
static_assert(InvR < Mod && ((unsigned long long)R * InvR) % Mod == 1, "InvR = R^{-1} (mod Mod)");
static_assert(((((1ULL << W) - Mod) * InvNegMod) & 0xffffffffU) == 1, "InvNegMod = (-Mod)^{-1} (mod R)");
#endif
unsigned residue; //residue = value * R % Mod
MontgomeryModInt(): residue(0) { }
MontgomeryModInt(signed sig): residue(multR(sig)) { }
MontgomeryModInt(signed long long sig): residue(multR((signed)(sig % Mod))) { }
static unsigned multR(signed sig) {
signed sigt = (signed long long)sig * R % Mod;
if(sigt < 0) sigt += Mod;
return (unsigned)sigt;
}
int get() const { return (int)reduce(residue); }
static unsigned reduce(unsigned T) {
unsigned m = T * (unsigned)InvNegMod;
unsigned t = (unsigned)((T + (unsigned long long)m * Mod) >> W);
if(t >= Mod) t -= Mod;
return t;
}
static unsigned reduce(unsigned long long T) {
unsigned m = (unsigned)T * (unsigned)InvNegMod;
unsigned t = (unsigned)((T + (unsigned long long)m * Mod) >> W);
if(t >= Mod) t -= Mod;
return t;
}
MontgomeryModInt &operator+=(MontgomeryModInt that) {
if((residue += that.residue) >= Mod) residue -= Mod;
return *this;
}
MontgomeryModInt &operator-=(MontgomeryModInt that) {
if((residue += Mod - that.residue) >= Mod) residue -= Mod;
return *this;
}
MontgomeryModInt &operator*=(MontgomeryModInt that) {
residue = reduce((unsigned long long)residue * that.residue);
return *this;
}
MontgomeryModInt &operator/=(MontgomeryModInt that) {
return *this *= that.inverse();
}
MontgomeryModInt operator+(MontgomeryModInt that) const { return MontgomeryModInt(*this) += that; }
MontgomeryModInt operator-(MontgomeryModInt that) const { return MontgomeryModInt(*this) -= that; }
MontgomeryModInt operator*(MontgomeryModInt that) const {
MontgomeryModInt res;
res.residue = reduce((unsigned long long)residue * that.residue);
return res;
}
MontgomeryModInt operator/(MontgomeryModInt that) const { return MontgomeryModInt(*this) /= that; }
MontgomeryModInt inverse() const {
//a^{-1} R = (a R)^{-1} * R^2
static const int SquaredR = (unsigned long long)R * R % Mod;
signed a = residue, b = Mod, u = 1, v = 0;
while(b) {
signed t = a / b;
a -= t * b; std::swap(a, b);
u -= t * v; std::swap(u, v);
}
if(u < 0) u += Mod;
MontgomeryModInt res;
res.residue = (unsigned long long)(unsigned)u * SquaredR % Mod;
return res;
}
};
typedef MontgomeryModInt fft_mint;
const int OmegaMax = 23;
fft_mint OmegaPrim = 31;
fft_mint Omega[OmegaMax+1];
void fft_init() {
if(Omega[OmegaMax].get() != 0) return;
fft_mint x = OmegaPrim;
for(int i = OmegaMax; i >= 0; i --) {
Omega[i] = x;
x *= x;
}
}
//aを破壊する
void fft_main(int logn, const bool inv, fft_mint a[]) {
fft_init();
int n = 1 << logn;
fft_mint ww = Omega[logn];
if(inv) ww = ww.inverse();
for(int m = n, mi = 0; m >= 2; m >>= 1, mi ++) {
int mh = m >> 1;
fft_mint w = 1;
rep(i, mh) {
for(int j = i; j < n; j += m) {
int k = j + mh;
fft_mint x = a[j] - a[k];
a[j] += a[k];
a[k] = w * x;
}
w *= ww;
}
ww *= ww;
}
int i = 0;
reu(j, 1, n-1) {
for(int k = n >> 1; k > (i ^= k); k >>= 1) ;
if(j < i) swap(a[i], a[j]);
}
}
void fft(int logn, fft_mint a[]) { fft_main(logn, false, a); }
void inverse_fft(int logn, fft_mint a[]) {
fft_main(logn, true, a);
int n = 1 << logn;
fft_mint invn = fft_mint(n).inverse();
rep(i, n) a[i] *= invn;
}
//v, wを破壊し、vに結果を返す
//v, wのサイズは 2^logn, lognはceil(log_2(size(v) + size(w)))必要
void convolution(fft_mint v[], fft_mint w[], int logn) {
fft(logn, v); fft(logn, w);
rep(i, 1<<logn) v[i] *= w[i];
inverse_fft(logn, v);
}
int main() {
int L, M, N;
scanf("%d%d%d", &L, &M, &N);
int log2n = 0;
while((1 << log2n) < (N + N)) ++ log2n;
vector<fft_mint> v(1 << log2n), w(1 << log2n);
rep(i, L) {
int a;
scanf("%d", &a), -- a;
v[N-1-a] = 1;
}
rep(i, M) {
int b;
scanf("%d", &b), -- b;
w[b] = 1;
}
convolution(&v[0], &w[0], log2n);
int Q;
scanf("%d", &Q);
rep(i, Q) {
int ans = v[N-1-i].get();
printf("%d\n", ans);
}
return 0;
}
anta