結果

問題 No.5002 stick xor
ユーザー kimiyuki
提出日時 2018-05-26 02:53:38
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 986 ms / 1,000 ms
コード長 7,316 bytes
コンパイル時間 36,585 ms
実行使用メモリ 1,548 KB
スコア 43,345
最終ジャッジ日時 2018-05-26 02:54:16
ジャッジサーバーID
(参考情報)
judge9 /
純コード判定しない問題か言語
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 32
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize "O3"
#pragma GCC target "avx2"
#include <bits/stdc++.h>
#define REP(i, n) for (int i = 0; (i) < int(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < int(n); ++ (i))
#define REP_R(i, n) for (int i = int(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = int(n) - 1; (i) >= int(m); -- (i))
#define ALL(x) begin(x), end(x)
#define dump(x) cerr << #x " = " << x << endl
#define unittest_name_helper(counter) unittest_ ## counter
#define unittest_name(counter) unittest_name_helper(counter)
#define unittest __attribute__((constructor)) void unittest_name(__COUNTER__) ()
using ll = long long;
using namespace std;
template <class T> using reversed_priority_queue = priority_queue<T, vector<T>, greater<T> >;
template <class T> inline void chmax(T & a, T const & b) { a = max(a, b); }
template <class T> inline void chmin(T & a, T const & b) { a = min(a, b); }
template <typename X, typename T> auto vectors(X x, T a) { return vector<T>(x, a); }
template <typename X, typename Y, typename Z, typename... Zs> auto vectors(X x, Y y, Z z, Zs... zs) { auto cont = vectors(y, z, zs...); return vector
    <decltype(cont)>(x, cont); }
template <typename T> ostream & operator << (ostream & out, vector<T> const & xs) { REP (i, int(xs.size()) - 1) out << xs[i] << ' '; if (not xs.empty
    ()) out << xs.back(); return out; }
constexpr int N = 60;
constexpr int K = 500;
constexpr int MAX_L = 25;
constexpr int N2 = N * N;
class xor_shift_128 {
public:
typedef uint32_t result_type;
xor_shift_128(uint32_t seed = 42) {
set_seed(seed);
}
void set_seed(uint32_t seed) {
a = seed = 1812433253u * (seed ^ (seed >> 30));
b = seed = 1812433253u * (seed ^ (seed >> 30)) + 1;
c = seed = 1812433253u * (seed ^ (seed >> 30)) + 2;
d = seed = 1812433253u * (seed ^ (seed >> 30)) + 3;
}
uint32_t operator() () {
uint32_t t = (a ^ (a << 11));
a = b; b = c; c = d;
return d = (d ^ (d >> 19)) ^ (t ^ (t >> 8));
}
static constexpr uint32_t max() { return numeric_limits<result_type>::max(); }
static constexpr uint32_t min() { return numeric_limits<result_type>::min(); }
private:
uint32_t a, b, c, d;
};
int count_black(int y, int x, bool is_vertical, int len, bitset<N2> const & a) {
int cnt = 0;
REP (i, len) {
int ny = y + (is_vertical ? i : 0);
int nx = x + (is_vertical ? 0 : i);
cnt += a[ny * N + nx];
}
return cnt;
}
void apply_rect(int y, int x, bool is_vertical, int len, bitset<N2> & a) {
REP (i, len) {
int ny = y + (is_vertical ? i : 0);
int nx = x + (is_vertical ? 0 : i);
auto && p = a[ny * N + nx];
p = not p;
}
}
array<tuple<int, int, bool>, K> solve_greedy(array<int, K> const & l, bitset<N2> & a) {
array<vector<int>, N + 1> lookup;
REP (i, K) lookup[l[i]].push_back(i);
array<tuple<int, int, bool>, K> result;
REP_R (len, N + 1) {
for (int i : lookup[len]) {
int highscore = -1;
REP (y, N) REP (x, N) REP (is_vertical, 2) {
if ( is_vertical and y + len > N) continue;
if (not is_vertical and x + len > N) continue;
int score = count_black(y, x, is_vertical, l[i], a);
if (highscore < score) {
highscore = score;
result[i] = make_tuple(y, x, is_vertical);
}
}
assert (highscore != -1);
int y, x; bool is_vertical; tie(y, x, is_vertical) = result[i];
apply_rect(y, x, is_vertical, l[i], a);
}
}
return result;
}
array<tuple<int, int, bool>, K> solve(array<int, K> const & l, bitset<N2> a) {
const auto TLE = chrono::duration_cast<chrono::nanoseconds>(chrono::milliseconds(1000 - 20));
chrono::high_resolution_clock::time_point clock_end = chrono::high_resolution_clock::now() + TLE;
xor_shift_128 gen;
array<tuple<int, int, bool>, K> result = solve_greedy(l, a);
array<tuple<int, int, bool>, K> rects = result;
int highscore = a.count();
int score = highscore;
int iteration = 0;
double temperature = 1.0;
for (; ; iteration ++) {
if (iteration % 100 == 0) {
temperature = (clock_end - chrono::high_resolution_clock::now()).count() / (double)TLE.count();
if (temperature < 0) break;
}
int i = uniform_int_distribution<int>(0, K - 1)(gen);
// prev
int y1, x1; bool is_vertical1; tie(y1, x1, is_vertical1) = rects[i];
apply_rect(y1, x1, is_vertical1, l[i], a);
int black1 = count_black(y1, x1, is_vertical1, l[i], a);
// next
bool is_vertical2 = bernoulli_distribution(0.5)(gen);
int y2 = uniform_int_distribution<int>(0, (N - 1) - (is_vertical2 ? l[i] : 0))(gen);
int x2 = uniform_int_distribution<int>(0, (N - 1) - (is_vertical2 ? 0 : l[i]))(gen);
if (is_vertical2) {
if (bernoulli_distribution(0.5)(gen)) {
while (y2 - 1 >= 0 and (a[(y2 - 1) * N + x2] or not a[(y2 + l[i] - 1) * N + x1])) -- y2;
} else {
while (y2 + l[i] < N and (not a[y2 * N + x2] or a[(y2 + l[i]) * N + x2])) ++ y2;
}
} else {
if (bernoulli_distribution(0.5)(gen)) {
while (x2 - 1 >= 0 and (a[y2 * N + x2 - 1] or not a[y2 * N + x2 + l[i] - 1])) -- x2;
} else {
while (x2 + l[i] < N and (not a[y2 * N + x2] or a[y2 * N + x2 + l[i]])) ++ x2;
}
}
int black2 = count_black(y2, x2, is_vertical2, l[i], a);
double delta = black2 - black1;
if (delta >= 0) { // or bernoulli_distribution(exp(delta / temperature))(gen)) {
score -= l[i] - 2 * black1;
assert (score == a.count());
apply_rect(y2, x2, is_vertical2, l[i], a);
score += l[i] - 2 * black2;
assert (score == a.count());
rects[i] = make_tuple(y2, x2, is_vertical2);
if (score < highscore) {
highscore = score;
result = rects;
cerr << "black = " << highscore << " / " << N2 << endl;
}
} else {
apply_rect(y1, x1, is_vertical1, l[i], a);
}
}
cerr << "iteration = " << iteration << endl;
cerr << "black = " << highscore << " / " << N2 << endl;
return result;
}
int main() {
// input
{ int n; cin >> n; assert (n == N); }
{ int k; cin >> k; assert (k == K); }
array<int, K> l;
REP (i, K) cin >> l[i];
bitset<N2> a;
REP (y, N) REP (x, N) {
char c; cin >> c;
a[y * N + x] = c - '0';
}
// solve
array<tuple<int, int, bool>, K> result = solve(l, a);
// output
int w0 = N2 - a.count();
REP (i, K) {
int y, x; bool is_vertical; tie(y, x, is_vertical) = result[i];
int ny = y + (is_vertical ? l[i] - 1 : 0);
int nx = x + (is_vertical ? 0 : l[i] - 1);
cout << y + 1 << ' ' << x + 1 << ' ' << ny + 1 << ' ' << nx + 1 << endl;
apply_rect(y, x, is_vertical, l[i], a);
}
cerr << "black = " << a.count() << " / " << N2 << endl;
int wk = N2 - a.count();
cerr << "raw score = " << wk - w0 << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0