結果

問題 No.496 ワープクリスタル (給料日前編)
ユーザー バイトバイト
提出日時 2018-06-15 17:01:18
言語 Java21
(openjdk 21)
結果
WA  
実行時間 -
コード長 13,226 bytes
コンパイル時間 2,807 ms
コンパイル使用メモリ 87,064 KB
実行使用メモリ 40,988 KB
最終ジャッジ日時 2024-06-30 14:51:35
合計ジャッジ時間 5,467 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 51 ms
37,196 KB
testcase_01 AC 52 ms
37,400 KB
testcase_02 AC 52 ms
36,884 KB
testcase_03 AC 51 ms
37,392 KB
testcase_04 AC 52 ms
37,268 KB
testcase_05 AC 51 ms
37,260 KB
testcase_06 AC 49 ms
37,140 KB
testcase_07 AC 49 ms
37,244 KB
testcase_08 AC 87 ms
40,672 KB
testcase_09 AC 90 ms
40,716 KB
testcase_10 AC 53 ms
37,424 KB
testcase_11 AC 52 ms
37,204 KB
testcase_12 AC 54 ms
37,604 KB
testcase_13 AC 56 ms
37,576 KB
testcase_14 AC 59 ms
37,580 KB
testcase_15 AC 55 ms
37,388 KB
testcase_16 AC 58 ms
37,796 KB
testcase_17 WA -
testcase_18 AC 58 ms
37,628 KB
testcase_19 AC 56 ms
37,536 KB
testcase_20 AC 56 ms
37,684 KB
testcase_21 AC 52 ms
37,500 KB
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 AC 92 ms
40,988 KB
testcase_26 AC 91 ms
40,868 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

package com.company;
import java.io.*;
import java.util.*;

/**
 * @author baito
 */
public class Main
{
    static StringBuilder sb = new StringBuilder();
    static FastScanner sc = new FastScanner(System.in);
    static int INF = 10000;
    static long MOD = 1000000007;
    static int[] y4 = {0, 1, 0, -1};
    static int[] x4 = {1, 0, -1, 0};
    static int[] y8 = {0, 1, 0, -1, -1, 1, 1, -1};
    static int[] x8 = {1, 0, -1, 0, 1, -1, 1, -1};
    static long[] F;//factorial
    static boolean[] isPrime;
    static int[] primes;

    static int gx, gy, N, f;
    static int[] x, y, c;
    //縦はクリスタル,横はx[0][][]とy[1][][]
    static int[][][] dp;

    public static void main(String[] args)
    {

        gx = sc.nextInt();
        gy = sc.nextInt();
        N = sc.nextInt();
        f = sc.nextInt();
        x = new int[N];
        y = new int[N];
        c = new int[N];
        for (int i = 0; i < N; i++)
        {
            x[i] = sc.nextInt();
            y[i] = sc.nextInt();
            c[i] = sc.nextInt();
        }
        //もし総額がはみ出す場合はスルー
        int maxc = (gx + gy) * f;
        //i x y
        dp = new int[N + 1][gx+1][gy+1];
        for (int i = 0; i <= N ; i++)
            fill(dp[i], INF);
        for (int i = 0; i <= N; i++)
        {
            dp[i][0][0] = maxc;
        }
        int minc = maxc;
        for (int hi = 0; hi < N; hi++)
        {
            for (int xi = 0; xi <= gx ; xi++)
            {
                for (int yi = 0; yi <= gy ; yi++)
                {

                    if (dp[hi][xi][yi] == INF) continue;
                    //真下に移行
                    dp[hi + 1][xi][yi] = Math.min(dp[hi + 1][xi][yi], dp[hi][xi][yi]);
                    minc = Math.min(minc,dp[hi + 1][xi][yi] );

                    int nx = xi + x[hi];
                    int ny = yi + y[hi];
                    int nc = dp[hi][xi][yi] + c[hi] - (x[hi] + y[hi]) * f;
                    if (gx < nx || gy < ny ) continue;
                    dp[hi + 1][nx][ny] = nc;
                    minc = Math.min(minc, nc);
                }
            }
        }
        System.out.println(minc);

    }

    public static long sumMod(long... lar)
    {
        long sum = 0;
        for (long l : lar)
            sum = (sum + l % MOD) % MOD;
        return sum;
    }

    /**
     * <h1>指定した値以上の先頭のインデクスを返す</h1>
     * <p>配列要素が0のときは、0が返る。</p>
     *
     * @return<b>int</b> : 探索した値以上で、先頭になるインデクス
     */
    public static int lowerBound(final int[] arr, final int value)
    {
        int low = 0;
        int high = arr.length;
        int mid;
        while (low < high)
        {
            mid = ((high - low) >>> 1) + low;    //(low + high) / 2 (オーバーフロー対策)
            if (arr[mid] < value)
            {
                low = mid + 1;
            }
            else
            {
                high = mid;
            }
        }
        return low;
    }

    /**
     * <h1>指定した値より大きい先頭のインデクスを返す</h1>
     * <p>配列要素が0のときは、0が返る。</p>
     *
     * @return<b>int</b> : 探索した値より上で、先頭になるインデクス
     */
    public static int upperBound(final int[] arr, final int value)
    {
        int low = 0;
        int high = arr.length;
        int mid;
        while (low < high)
        {
            mid = ((high - low) >>> 1) + low;    //(low + high) / 2 (オーバーフロー対策)
            if (arr[mid] <= value)
            {
                low = mid + 1;
            }
            else
            {
                high = mid;
            }
        }
        return low;
    }

    //次の順列に書き換える、最大値ならfalseを返す
    public static boolean nextPermutation(int A[])
    {
        int len = A.length;
        int pos = len - 2;
        for (; pos >= 0; pos--)
        {
            if (A[pos] < A[pos + 1]) break;
        }
        if (pos == -1) return false;

        //posより大きい最小の数を二分探索
        int ok = pos + 1;
        int ng = len;
        while (Math.abs(ng - ok) > 1)
        {
            int mid = (ok + ng) / 2;
            if (A[mid] > A[pos]) ok = mid;
            else ng = mid;

        }

        swap(A, pos, ok);
        reverse(A, pos + 1, len - 1);


        return true;
    }

    //次の順列に書き換える、最小値ならfalseを返す
    public static boolean prevPermutation(int A[])
    {
        int len = A.length;
        int pos = len - 2;
        for (; pos >= 0; pos--)
        {
            if (A[pos] > A[pos + 1]) break;
        }
        if (pos == -1) return false;

        //posより小さい最大の数を二分探索
        int ok = pos + 1;
        int ng = len;
        while (Math.abs(ng - ok) > 1)
        {
            int mid = (ok + ng) / 2;
            if (A[mid] < A[pos]) ok = mid;
            else ng = mid;

        }

        swap(A, pos, ok);
        reverse(A, pos + 1, len - 1);


        return true;
    }

    //↓nCrをmod計算するために必要。 ***factorial(N)を呼ぶ必要がある***
    static long ncr(int n, int r)
    {
        factorial(n);
        return F[n] / (F[n - r] * F[r]);
    }

    static long modNcr(int n, int r)
    {
        long result = F[n];
        result = result * modInv(F[n - r]) % MOD;
        result = result * modInv(F[r]) % MOD;
        return result;
    }

    static long modInv(long n)
    {
        return modPow(n, MOD - 2);
    }

    static void factorial(int n)
    {
        F = new long[n + 1];
        F[0] = F[1] = 1;
        for (int i = 2; i <= n; i++)
        {
            F[i] = (F[i - 1] * i) % MOD;
        }
    }

    static long modPow(long x, long n)
    {
        long res = 1L;
        while (n > 0)
        {
            if ((n & 1) == 1)
            {
                res = res * x % MOD;
            }
            x = x * x % MOD;
            n >>= 1;
        }
        return res;
    }

    //↑nCrをmod計算するために必要

    static int gcd(int n, int r)
    {
        return r == 0 ? n : gcd(r, n % r);
    }

    static long gcd(long n, long r)
    {
        return r == 0 ? n : gcd(r, n % r);
    }

    static <T> void swap(T[] x, int i, int j)
    {
        T t = x[i];
        x[i] = x[j];
        x[j] = t;
    }

    static void swap(int[] x, int i, int j)
    {
        int t = x[i];
        x[i] = x[j];
        x[j] = t;
    }

    public static void reverse(int[] x)
    {
        int l = 0;
        int r = x.length - 1;
        while (l < r)
        {
            int temp = x[l];
            x[l] = x[r];
            x[r] = temp;
            l++;
            r--;
        }
    }

    public static void reverse(int[] x, int s, int e)
    {
        int l = s;
        int r = e;
        while (l < r)
        {
            int temp = x[l];
            x[l] = x[r];
            x[r] = temp;
            l++;
            r--;
        }
    }

    static int length(int a)
    {
        int cou = 0;
        while (a != 0)
        {
            a /= 10;
            cou++;
        }
        return cou;
    }

    static int length(long a)
    {
        int cou = 0;
        while (a != 0)
        {
            a /= 10;
            cou++;
        }
        return cou;
    }

    static int countC2(char[][] a, char c)
    {
        int co = 0;
        for (int i = 0; i < a.length; i++)
            for (int j = 0; j < a[0].length; j++)
                if (a[i][j] == c) co++;
        return co;
    }

    static void fill(int[][] a, int v)
    {
        for (int i = 0; i < a.length; i++)
            for (int j = 0; j < a[0].length; j++)
                a[i][j] = v;
    }

    static int max(int a, int b, int c)
    {
        return Math.max(a, Math.max(b, c));
    }

    static int max(int[] ar)
    {
        int res = Integer.MIN_VALUE;
        for (int i : ar)
            res = Math.max(res, i);
        return res;
    }

    static int min(int a, int b, int c)
    {
        return Math.min(a, Math.min(b, c));
    }

    static int min(int[] ar)
    {
        int res = Integer.MAX_VALUE;
        for (int i : ar)
            res = Math.min(res, i);
        return res;
    }

    static int abs(int a)
    {
        return Math.abs(a);
    }

    static class FastScanner
    {

        private BufferedReader reader = null;
        private StringTokenizer tokenizer = null;

        public FastScanner(InputStream in)
        {
            reader = new BufferedReader(new InputStreamReader(in));
            tokenizer = null;
        }

        public String next()
        {
            if (tokenizer == null || !tokenizer.hasMoreTokens())
            {
                try
                {
                    tokenizer = new StringTokenizer(reader.readLine());
                } catch (IOException e)
                {
                    throw new RuntimeException(e);
                }
            }
            return tokenizer.nextToken();
        }

        /*public String nextChar(){
            return (char)next()[0];
        }*/
        public String nextLine()
        {
            if (tokenizer == null || !tokenizer.hasMoreTokens())
            {
                try
                {
                    return reader.readLine();
                } catch (IOException e)
                {
                    throw new RuntimeException(e);
                }
            }

            return tokenizer.nextToken("\n");
        }

        public long nextLong()
        {
            return Long.parseLong(next());
        }

        public int nextInt()
        {
            return Integer.parseInt(next());
        }

        public double nextDouble()
        {
            return Double.parseDouble(next());
        }

        public int[] nextIntArray(int n)
        {
            int[] a = new int[n];
            for (int i = 0; i < n; i++)
            {
                a[i] = nextInt();
            }
            return a;
        }

        public int[][] nextIntArray2(int h, int w)
        {
            int[][] a = new int[h][w];
            for (int hi = 0; hi < h; hi++)
            {
                for (int wi = 0; wi < w; wi++)
                {
                    a[hi][wi] = nextInt();
                }
            }
            return a;
        }

        public int[] nextIntArray21(int n, int scalar)
        {
            int[] a = new int[n];
            for (int i = 0; i < n; i++)
                a[i] = nextInt() * scalar + nextInt();
            return a;
        }

        public Integer[] nextIntegerArray(int n)
        {
            Integer[] a = new Integer[n];
            for (int i = 0; i < n; i++)
            {
                a[i] = nextInt();
            }
            return a;
        }

        public char[] nextCharArray(int n)
        {
            char[] a = next().toCharArray();

            return a;
        }

        public char[][] nextCharArray2(int h, int w)
        {
            char[][] a = new char[h][w];
            for (int i = 0; i < h; i++)
            {
                a[i] = next().toCharArray();
            }
            return a;
        }

        //スペースが入っている場合
        public char[][] nextCharArray2s(int h, int w)
        {
            char[][] a = new char[h][w];
            for (int i = 0; i < h; i++)
            {
                a[i] = nextLine().replace(" ", "").toCharArray();
            }
            return a;
        }

        public char[][] nextWrapCharArray2(int h, int w, char c)
        {
            char[][] a = new char[h + 2][w + 2];
            //char c = '*';
            int i;
            for (i = 0; i < w + 2; i++)
                a[0][i] = c;
            for (i = 1; i < h + 1; i++)
            {
                a[i] = (c + next() + c).toCharArray();
            }
            for (i = 0; i < w + 2; i++)
                a[h + 1][i] = c;
            return a;
        }

        //スペースが入ってる時用
        public char[][] nextWrapCharArray2s(int h, int w, char c)
        {
            char[][] a = new char[h + 2][w + 2];
            //char c = '*';
            int i;
            for (i = 0; i < w + 2; i++)
                a[0][i] = c;
            for (i = 1; i < h + 1; i++)
            {
                a[i] = (c + nextLine().replace(" ", "") + c).toCharArray();
            }
            for (i = 0; i < w + 2; i++)
                a[h + 1][i] = c;
            return a;
        }

        public long[] nextLongArray(int n)
        {
            long[] a = new long[n];
            for (int i = 0; i < n; i++)
            {
                a[i] = nextLong();
            }
            return a;
        }

        public long[][] nextLongArray2(int h, int w)
        {
            long[][] a = new long[h][w];
            for (int hi = 0; hi < h; hi++)
            {
                for (int wi = 0; wi < h; wi++)
                {
                    a[h][w] = nextLong();
                }
            }
            return a;
        }
    }
}
0