結果
| 問題 | No.703 ゴミ拾い Easy |
| コンテスト | |
| ユーザー |
anta
|
| 提出日時 | 2018-06-15 22:47:26 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 216 ms / 1,500 ms |
| コード長 | 3,470 bytes |
| 記録 | |
| コンパイル時間 | 1,913 ms |
| コンパイル使用メモリ | 179,164 KB |
| 実行使用メモリ | 29,136 KB |
| 最終ジャッジ日時 | 2025-01-02 13:55:29 |
| 合計ジャッジ時間 | 8,433 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 46 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:122:30: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
122 | scanf("%d", &as[i]);
| ~~~~~^~~~~~~~~~~~~~
main.cpp:125:30: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
125 | scanf("%d", &xs[i]);
| ~~~~~^~~~~~~~~~~~~~
main.cpp:128:30: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
128 | scanf("%d", &ys[i]);
| ~~~~~^~~~~~~~~~~~~~
ソースコード
#include "bits/stdc++.h"
using namespace std;
template<typename T, typename U> static void amin(T &x, U y) { if (y < x) x = y; }
struct IncrementalEnvelope {
typedef pair<int, long long> P;
typedef int X;
vector<P> ps;
vector<pair<X, P> > seq;
vector<int> sizes;
void clear() {
ps.clear();
seq.clear();
sizes.clear();
}
bool empty() const { return ps.empty(); }
struct ComparePoint {
bool operator()(const P &a, const P &b) const {
if (a.first != b.first)
return a.first < b.first;
else
return a.second > b.second;
}
};
void insert(const P &p) {
int n = (int)ps.size();
ps.push_back(p);
seq.push_back(make_pair(-1, P()));
int i;
for (i = 0; n >> i & 1; ++ i) {
int m = 1 << i;
inplace_merge(ps.end() - m * 2, ps.end() - m, ps.end(), ComparePoint());
sizes[i] = 0;
}
if (sizes.size() == i)
sizes.push_back(0);
assert(sizes[i] == 0);
int m = 1 << i;
makeEnvelope(&*(seq.end() - m), sizes[i], &*(ps.end() - m), &ps[0] + ps.size());
}
long long findMax(X x) const {
long long r = numeric_limits<long long>::min();
const pair<X, P> *stk = &seq[0] + seq.size();
for (int i = 0; i < (int)sizes.size(); ++ i) {
int n = sizes[i];
if (n != 0) {
stk -= 1 << i;
long long val = findMaxEnvelope(stk, n, x);
if (r < val)
r = val;
}
}
return r;
}
private:
static long long findMaxEnvelope(const pair<X, P> *stk, int size, X x) {
int l = 0, u = size - 1;
while (u - l > 0) {
int mid = (l + u + 1) / 2;
if (stk[mid].first <= x)
l = mid;
else
u = mid - 1;
}
P p = stk[l].second;
return evaluate(p, x);
}
static void makeEnvelope(pair<X, P> *stk, int &sp, const P *begin, const P *end) {
sp = 0;
for (const P *it = begin; it != end; ++ it) {
P p = *it;
if (sp > 0 && p.first == stk[sp - 1].second.first)
continue;
for (; sp > 0; -- sp) {
X x = stk[sp - 1].first;
if (evaluate(p, x) <= evaluate(stk[sp - 1].second, x))
break;
}
long long x;
if (sp == 0)
x = 0;
else
x = crosspoint(stk[sp - 1].second, p);
assert(x >= 0);
if (x > numeric_limits<X>::max())
x = numeric_limits<X>::max();
stk[sp ++] = make_pair((X)x, p);
}
}
static long long evaluate(const P &p, X x) {
return (long long)x * p.first + p.second;
}
static long long crosspoint(const P &p, const P &q) {
long long num = p.second - q.second;
int den = q.first - p.first;
assert(den > 0);
return (num / den + (num > 0 && num % den != 0));
}
public:
void swap(IncrementalEnvelope &that) {
ps.swap(that.ps);
seq.swap(that.seq);
sizes.swap(that.sizes);
}
};
int main() {
int N;
while (~scanf("%d", &N)) {
vector<int> as(N);
for (int i = 0; i < N; ++ i)
scanf("%d", &as[i]);
vector<int> xs(N);
for (int i = 0; i < N; ++ i)
scanf("%d", &xs[i]);
vector<int> ys(N);
for (int i = 0; i < N; ++ i)
scanf("%d", &ys[i]);
auto sq = [](int x) {return (long long)x * x; };
const long long INFL = 0x3f3f3f3f3f3f3f3fLL;;
vector<long long> dp(N + 1, INFL);
dp[0] = 0;
IncrementalEnvelope envelope;
for (int i = 0; i < N; ++ i) {
envelope.insert(IncrementalEnvelope::P(2 * xs[i], -(dp[i] + sq(ys[i]) + sq(xs[i]))));
long long t = INFL;
// for (int j = 0; j <= i; ++ j)
// amin(t, dp[j] + sq(ys[j]) + sq(as[i]) + sq(xs[j]) - 2LL * as[i] * xs[j]);
t = -envelope.findMax(as[i]) + sq(as[i]);
dp[i + 1] = t;
}
long long ans = dp[N];
printf("%lld\n", ans);
}
}
anta