結果

問題 No.703 ゴミ拾い Easy
ユーザー ei1333333ei1333333
提出日時 2018-06-15 22:53:12
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 152 ms / 1,500 ms
コード長 4,675 bytes
コンパイル時間 2,340 ms
コンパイル使用メモリ 200,912 KB
最終ジャッジ日時 2025-01-05 14:02:30
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 46
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:147:8: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  147 |   scanf("%lld", &N);
      |   ~~~~~^~~~~~~~~~~~
main.cpp:148:35: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  148 |   for(int i = 0; i < N; i++) scanf("%lld", &A[i]);
      |                              ~~~~~^~~~~~~~~~~~~~~
main.cpp:149:35: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  149 |   for(int i = 0; i < N; i++) scanf("%lld", &X[i]);
      |                              ~~~~~^~~~~~~~~~~~~~~
main.cpp:150:35: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  150 |   for(int i = 0; i < N; i++) scanf("%lld", &Y[i]);
      |                              ~~~~~^~~~~~~~~~~~~~~
main.cpp: In member function ‘bool ConvexHullDynamic::Line::operator<(const ConvexHullDynamic::Line&) const’:
main.cpp:42:5: warning: control reaches end of non-void function [-Wreturn-type]
   42 |     }
      |     ^

ソースコード

diff #

#include <bits/stdc++.h>

using namespace std;

using int64 = long long;
const int64 INF = 1LL << 58;

class ConvexHullDynamic {
  typedef long long coef_t;
  typedef long long coord_t;
  typedef long long val_t;

  /*
   * Line 'y=a*x+b' represented by 2 coefficients 'a' and 'b'
   * and 'xLeft' which is intersection with previous line in hull(first line has -INF)
   */
private:
  struct Line {
    coef_t a, b;
    double xLeft;

    enum Type {
      line, maxQuery, minQuery
    } type;
    coord_t val;

    explicit Line(coef_t aa = 0, coef_t bb = 0) : a(aa), b(bb), xLeft(-INFINITY), type(Type::line), val(0) {}

    val_t valueAt(coord_t x) const { return a * x + b; }

    friend bool areParallel(const Line &l1, const Line &l2) { return l1.a == l2.a; }

    friend double intersectX(const Line &l1, const Line &l2) { return areParallel(l1, l2) ? INFINITY : 1.0 * (l2.b - l1.b) / (l1.a - l2.a); }

    bool operator<(const Line &l2) const {
      if(l2.type == line)
        return this->a < l2.a;
      if(l2.type == maxQuery)
        return this->xLeft < l2.val;
      if(l2.type == minQuery)
        return this->xLeft > l2.val;
    }
  };


  bool isMax; //whether or not saved envelope is top(search of max value)
public:
  std::set< Line > hull;  //envelope itself

private:
  /*
   * INFO:        Check position in hull by iterator
   * COMPLEXITY:  O(1)
   */
  bool hasPrev(std::set< Line >::iterator it) { return it != hull.begin(); }

  bool hasNext(std::set< Line >::iterator it) { return it != hull.end() && std::next(it) != hull.end(); }

  /*
   * INFO:        Check whether line l2 is irrelevant
   * NOTE:        Following positioning in hull must be true
   *              l1 is next left to l2
   *              l2 is right between l1 and l3
   *              l3 is next right to l2
   * COMPLEXITY:  O(1)
   */
  bool irrelevant(const Line &l1, const Line &l2, const Line &l3) { return intersectX(l1, l3) <= intersectX(l1, l2); }

  bool irrelevant(std::set< Line >::iterator it) {
    return hasPrev(it) && hasNext(it)
           && (isMax && irrelevant(*std::prev(it), *it, *std::next(it))
               || !isMax && irrelevant(*std::next(it), *it, *std::prev(it)));
  }

  /*
   * INFO:        Updates 'xValue' of line pointed by iterator 'it'
   * COMPLEXITY:  O(1)
   */
  std::set< Line >::iterator updateLeftBorder(std::set< Line >::iterator it) {
    if(isMax && !hasPrev(it) || !isMax && !hasNext(it))
      return it;

    double val = intersectX(*it, isMax ? *std::prev(it) : *std::next(it));
    Line buf(*it);
    it = hull.erase(it);
    buf.xLeft = val;
    it = hull.insert(it, buf);
    return it;
  }

public:
  explicit ConvexHullDynamic(bool isMax) : isMax(isMax) {}

  /*
   * INFO:        Adding line to the envelope
   *              Line is of type 'y=a*x+b' represented by 2 coefficients 'a' and 'b'
   * COMPLEXITY:  Adding N lines(N calls of function) takes O(N*log N) time
   */
  void addLine(coef_t a, coef_t b) {
    //find the place where line will be inserted in set
    Line l3 = Line(a, b);
    auto it = hull.lower_bound(l3);

    //if parallel line is already in set, one of them becomes irrelevant
    if(it != hull.end() && areParallel(*it, l3)) {
      if(isMax && it->b < b || !isMax && it->b > b)
        it = hull.erase(it);
      else
        return;
    }

    //try to insert
    it = hull.insert(it, l3);
    if(irrelevant(it)) {
      hull.erase(it);
      return;
    }

    //remove lines which became irrelevant after inserting line
    while(hasPrev(it) && irrelevant(std::prev(it))) hull.erase(std::prev(it));
    while(hasNext(it) && irrelevant(std::next(it))) hull.erase(std::next(it));

    //refresh 'xLine'
    it = updateLeftBorder(it);
    if(hasPrev(it))
      updateLeftBorder(std::prev(it));
    if(hasNext(it))
      updateLeftBorder(std::next(it));
  }

  val_t getBest(coord_t x) const {
    Line q;
    q.val = x;
    q.type = isMax ? Line::Type::maxQuery : Line::Type::minQuery;

    auto bestLine = hull.lower_bound(q);
    if(isMax) --bestLine;
    return bestLine->valueAt(x);
  }
};


int main() {
  int64 N, A[300000];
  int64 X[300000], Y[300000];

  scanf("%lld", &N);
  for(int i = 0; i < N; i++) scanf("%lld", &A[i]);
  for(int i = 0; i < N; i++) scanf("%lld", &X[i]);
  for(int i = 0; i < N; i++) scanf("%lld", &Y[i]);

  ConvexHullDynamic cht(false);
  cht.addLine(X[0], X[0] * X[0] + Y[0] * Y[0]);

  for(int i = 0; i < N; i++) {
    int64 ret = cht.getBest(-2 * A[i]);
    
    if(i + 1 == N) {
      cout << ret + A[N - 1] * A[N - 1] << endl;
    } else {
      cht.addLine(X[i + 1], X[i + 1] * X[i + 1] + Y[i + 1] * Y[i + 1] + A[i] * A[i] + ret);
    }
  }
}
0