結果
問題 | No.235 めぐるはめぐる (5) |
ユーザー | noshi_bot |
提出日時 | 2018-06-16 18:29:08 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 696 ms / 10,000 ms |
コード長 | 9,495 bytes |
コンパイル時間 | 779 ms |
コンパイル使用メモリ | 70,292 KB |
実行使用メモリ | 20,128 KB |
最終ジャッジ日時 | 2024-06-30 16:21:12 |
合計ジャッジ時間 | 4,035 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 696 ms
20,104 KB |
testcase_01 | AC | 373 ms
20,028 KB |
testcase_02 | AC | 580 ms
20,128 KB |
ソースコード
#define NDEBUG #include <cassert> #include <cstddef> #include <memory> #include <utility> #include <vector> template <class ValueMonoid, class OperatorMonoid, class Modifier> class link_cut_tree { public: using value_structure = ValueMonoid; using value_type = typename value_structure::value_type; using operator_structure = OperatorMonoid; using operator_type = typename operator_structure::value_type; using modifier_type = Modifier; using size_type = ::std::size_t; private: class node_type { public: node_type *left, *right, *parent; typename link_cut_tree::value_type value, sum; typename link_cut_tree::operator_type lazy; bool reversed; // reverse->lazy node_type(value_type &&v, operator_type &&o) : value(::std::move(v)), sum(value), lazy(::std::move(o)), reversed(0) { } }; using pointer = node_type *; using const_pointer = const node_type *; ::std::vector<node_type> nodes; size_type size_; value_structure vf; operator_structure of; modifier_type mf; pointer nil() noexcept { return nodes.data(); } void reverse(const pointer ptr) { ptr->lazy = of.reverse(ptr->lazy); ptr->reversed ^= 1; } void push(const pointer ptr) { if (ptr->reversed) { ptr->reversed = 0; ptr->value = vf.reverse(ptr->value); ::std::swap(ptr->left, ptr->right); reverse(ptr->left); reverse(ptr->right); } ptr->left->lazy = of(ptr->left->lazy, ptr->lazy); ptr->right->lazy = of(ptr->right->lazy, ptr->lazy); ptr->value = mf(ptr->value, ptr->lazy); ptr->lazy = of.identity(); } void propagate(pointer ptr) { pointer prev = nullptr; while (ptr != nil()) { ::std::swap(ptr->parent, prev); ::std::swap(ptr, prev); } while (prev) { push(prev); ::std::swap(prev->parent, ptr); ::std::swap(prev, ptr); } nil()->sum = vf.identity(); nil()->lazy = of.identity(); nil()->reversed = 0; } value_type reflect(const const_pointer ptr) { return mf(ptr->reversed ? vf.reverse(ptr->sum) : ptr->sum, ptr->lazy); } void calc(const pointer ptr) { ptr->sum = vf(vf(reflect(ptr->left), ptr->value), reflect(ptr->right)); } static void set_l(const pointer ptr, const pointer ch) { ptr->left = ch; ch->parent = ptr; } static void set_r(const pointer ptr, const pointer ch) { ptr->right = ch; ch->parent = ptr; } void rotate_l(const pointer ptr, const pointer ch) { set_r(ptr, ch->left); calc(ptr); set_l(ch, ptr); } void rotate_r(const pointer ptr, const pointer ch) { set_l(ptr, ch->right); calc(ptr); set_r(ch, ptr); } void splay(const pointer ptr) { for (pointer x, y = ptr;;) { x = ptr->parent; if (x->left == y) { y = x->parent; ptr->parent = y->parent; if (y->left == x) rotate_r(y, x), rotate_r(x, ptr); else if (y->right == x) rotate_l(y, ptr), rotate_r(x, ptr); else return ptr->parent = y, rotate_r(x, ptr); } else if (x->right == y) { y = x->parent; ptr->parent = y->parent; if (y->right == x) rotate_l(y, x), rotate_l(x, ptr); else if (y->left == x) rotate_r(y, ptr), rotate_l(x, ptr); else return ptr->parent = y, rotate_l(x, ptr); } else { return; } } } void expose(const pointer ptr) { propagate(ptr); pointer x = ptr, prev = nil(); while (x != nil()) { splay(x); x->right = prev; calc(x); prev = x; x = x->parent; } splay(ptr); calc(ptr); } void reroot(const pointer ptr) { expose(ptr); reverse(ptr); } pointer get_ptr(const size_type i) noexcept { return nodes.data() + 1 + i; } public: link_cut_tree() : link_cut_tree(0) {} explicit link_cut_tree(const size_type size, const value_structure &x = value_structure(), const operator_structure &y = operator_structure(), const modifier_type &z = modifier_type()) : size_(size), vf(x), of(y), mf(z) { nodes.reserve(size_ + 1); nodes.emplace_back(vf.identity(), of.identity()); const pointer n = nil(); n->left = n->right = n->parent = n; nodes.resize(size_ + 1, nodes.front()); } bool empty() const noexcept { return !size_; } size_type size() const noexcept { return size_; } bool connected(const size_type v, const size_type u) { assert(v < size()); assert(u < size()); expose(get_ptr(v)); expose(get_ptr(u)); return nodes[v + 1].parent != nil() || v == u; } value_type fold(const size_type v, const size_type u) { assert(v < size()); assert(u < size()); assert(connected(v, u)); reroot(get_ptr(v)); expose(get_ptr(u)); return nodes[u + 1].sum; } void link(const size_type parent, const size_type child) { assert(parent < size()); assert(child < size()); assert(!connected(parent, child)); reroot(get_ptr(child)); nodes[child + 1].parent = get_ptr(parent); } void cut(const size_type v) { assert(v < size()); expose(get_ptr(v)); nodes[v + 1].left->parent = nil(); nodes[v + 1].left = nil(); nodes[v + 1].sum = nodes[v + 1].value; } void update(const size_type v, const size_type u, const operator_type &data) { assert(v < size()); assert(u < size()); assert(connected(v, u)); reroot(get_ptr(v)); expose(get_ptr(u)); nodes[u + 1].lazy = data; } template <class F> void update(const size_type v, const F &f) { assert(v < size()); expose(get_ptr(v)); nodes[v + 1].value = f(nodes[v + 1].value); calc(get_ptr(v)); } }; template <class V, class O, class M> link_cut_tree<V, O, M> make_lctree(const ::std::size_t size, const V &v, const O &o, const M &m) { return link_cut_tree<V, O, M>(size, v, o, m); } #include <cstdint> template <::std::uint_fast32_t MODULO> class modint { using uint32 = ::std::uint_fast32_t; using uint64 = ::std::uint_fast64_t; public: using value_type = uint32; uint32 a; modint() : a(0) {} modint(const uint32 x) : a(x) {} modint operator+(const modint &o) const { return a + o.a < MODULO ? modint(a + o.a) : modint(a + o.a - MODULO); } modint operator-(const modint &o) const { return modint(a < o.a ? a + MODULO - o.a : a - o.a); } modint operator*(const modint &o) const { return modint(static_cast<uint64>(a) * o.a % MODULO); } modint operator/(const modint &o) const { return modint(static_cast<uint64>(a) * ~o % MODULO); } modint &operator+=(const modint &o) { return *this = *this + o; } modint &operator-=(const modint &o) { return *this = *this - o; } modint &operator*=(const modint &o) { return *this = *this * o; } modint &operator/=(const modint &o) { return *this = *this / o; } modint operator~() const { return pow(MODULO - 2); } modint operator-() const { return a ? modint(MODULO - a) : modint(); } modint operator++() { return a == MODULO - 1 ? a = 0 : ++a, *this; } modint operator--() { return a ? --a : a = MODULO - 1, *this; } bool operator==(const modint &o) const { return a == o.a; } bool operator!=(const modint &o) const { return a != o.a; } bool operator<(const modint &o) const { return a < o.a; } bool operator<=(const modint &o) const { return a <= o.a; } bool operator>(const modint &o) const { return a > o.a; } bool operator>=(const modint &o) const { return a >= o.a; } explicit operator bool() const { return a; } explicit operator uint32() const { return a; } modint pow(uint32 x) const { uint64 t = a, u = 1; while (x) { if (x & 1) u = u * t % MODULO; t = (t * t) % MODULO; x >>= 1; } return modint(u); } }; using mint = modint<1000000007>; struct city { using value_type = std::pair<mint, mint>; using cref = const value_type &; value_type operator()(cref x, cref y)const { return { x.first + y.first,x.second + y.second }; } value_type identity()const { return { 0,0 }; } value_type reverse(cref x)const { return x; } }; struct parade { using value_type = mint; mint operator()(mint x, mint y)const { return x + y; } mint identity()const { return 0; } mint reverse(mint x)const { return x; } }; struct act { std::pair<mint, mint> operator()(const std::pair<mint, mint> &x, mint y)const { return { x.first + x.second*y,x.second }; } }; template<class T, class F> class temp_monoid { const T id; const F f; public: using value_type = T; temp_monoid(const value_type&x, const F&y) :id(x), f(y) {} value_type operator()(const value_type &x, const value_type &y)const { return f(x, y); } value_type identity()const { return id; } value_type reverse(const value_type &x)const { return x; } }; template<class T, class F> temp_monoid<T, F> make_tmonoid(const T&x, const F&y) { return temp_monoid<T, F>(x, y); } #include <cstdio> int main() { using uint = unsigned int; using mint = modint<1000000007>; using P = std::pair<mint, mint>; auto cf = [](const P&x, const P&y) { return P(x.first + y.first, x.second + y.second); }; auto pf = [](const mint &x, const mint &y) { return x + y; }; auto mf = [](const P&x, const mint &y) { return P(x.first + x.second*y, x.second); }; uint n; scanf("%u", &n); auto T = make_lctree(n, make_tmonoid(P(0, 0), cf), make_tmonoid(mint(0), pf), mf); std::vector<mint> s(n), c(n); for (auto &e : s) scanf("%u", &e.a); for (auto &e : c) scanf("%u", &e.a); for (uint i = 0;i < n;++i) T.update(i, [&](const P&x) {return P(s[i], c[i]);}); while (--n) { uint a, b; scanf("%u%u", &a, &b); --a;--b; T.link(a, b); } uint q; scanf("%u", &q); while (q--) { uint t, x, y; mint z; scanf("%u%u%u", &t, &x, &y); --x;--y; if (t) { printf("%u\n", T.fold(x, y).first.a); } else { scanf("%u", &z.a); T.update(x, y, mint(z)); } } return 0; }