結果
| 問題 |
No.235 めぐるはめぐる (5)
|
| コンテスト | |
| ユーザー |
noshi_bot
|
| 提出日時 | 2018-06-16 21:59:01 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 712 ms / 10,000 ms |
| コード長 | 9,554 bytes |
| コンパイル時間 | 855 ms |
| コンパイル使用メモリ | 74,760 KB |
| 実行使用メモリ | 25,380 KB |
| 最終ジャッジ日時 | 2024-06-30 16:26:55 |
| 合計ジャッジ時間 | 4,103 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 3 |
ソースコード
#define NDEBUG
#define _CRT_SECURE_NO_WARNINGS
#include <cassert>
#include <cstddef>
#include <memory>
#include <utility>
#include <vector>
template <class ValueMonoid, class OperatorMonoid, class Modifier>
class link_cut_tree {
public:
using value_structure = ValueMonoid;
using value_type = typename value_structure::value_type;
using operator_structure = OperatorMonoid;
using operator_type = typename operator_structure::value_type;
using modifier_type = Modifier;
using size_type = ::std::size_t;
private:
class node_type {
public:
node_type *left, *right, *parent;
typename link_cut_tree::value_type value, sum;
typename link_cut_tree::operator_type lazy;
bool reversed; // reverse->lazy
template<class V>
node_type(V&&v, operator_type&&o)
: value(::std::forward<V>(v)), sum(value), lazy(::std::move(o)), reversed(0) {
}
};
using pointer = node_type *;
using const_pointer = const node_type *;
::std::vector<node_type> nodes;
size_type size_;
value_structure vf;
operator_structure of;
modifier_type mf;
pointer nil() noexcept { return nodes.data(); }
void reverse(const pointer ptr) {
ptr->lazy = of.reverse(ptr->lazy);
ptr->reversed ^= 1;
}
void push(const pointer ptr) {
if (ptr->reversed) {
ptr->reversed = 0;
ptr->value = vf.reverse(ptr->value);
::std::swap(ptr->left, ptr->right);
reverse(ptr->left);
reverse(ptr->right);
}
ptr->left->lazy = of(ptr->left->lazy, ptr->lazy);
ptr->right->lazy = of(ptr->right->lazy, ptr->lazy);
ptr->value = mf(ptr->value, ptr->lazy);
ptr->lazy = of.identity();
}
void propagate(pointer ptr) {
pointer prev = nullptr;
while (ptr != nil()) {
::std::swap(ptr->parent, prev);
::std::swap(ptr, prev);
}
while (prev) {
push(prev);
::std::swap(prev->parent, ptr);
::std::swap(prev, ptr);
}
nil()->sum = vf.identity();
nil()->lazy = of.identity();
nil()->reversed = 0;
}
value_type reflect(const const_pointer ptr) {
return mf(ptr->reversed ? vf.reverse(ptr->sum) : ptr->sum, ptr->lazy);
}
void calc(const pointer ptr) {
ptr->sum = vf(vf(reflect(ptr->left), ptr->value), reflect(ptr->right));
}
static void set_l(const pointer ptr, const pointer ch) {
ptr->left = ch;
ch->parent = ptr;
}
static void set_r(const pointer ptr, const pointer ch) {
ptr->right = ch;
ch->parent = ptr;
}
void rotate_l(const pointer ptr, const pointer ch) {
set_r(ptr, ch->left);
calc(ptr);
set_l(ch, ptr);
}
void rotate_r(const pointer ptr, const pointer ch) {
set_l(ptr, ch->right);
calc(ptr);
set_r(ch, ptr);
}
void splay(const pointer ptr) {
for (pointer x, y = ptr;;) {
x = ptr->parent;
if (x->left == y) {
y = x->parent;
ptr->parent = y->parent;
if (y->left == x)
rotate_r(y, x), rotate_r(x, ptr);
else if (y->right == x)
rotate_l(y, ptr), rotate_r(x, ptr);
else
return ptr->parent = y, rotate_r(x, ptr);
}
else if (x->right == y) {
y = x->parent;
ptr->parent = y->parent;
if (y->right == x)
rotate_l(y, x), rotate_l(x, ptr);
else if (y->left == x)
rotate_r(y, ptr), rotate_l(x, ptr);
else
return ptr->parent = y, rotate_l(x, ptr);
}
else {
return;
}
}
}
void expose(const pointer ptr) {
propagate(ptr);
pointer x = ptr, prev = nil();
while (x != nil()) {
splay(x);
x->right = prev;
calc(x);
prev = x;
x = x->parent;
}
splay(ptr);
calc(ptr);
}
void reroot(const pointer ptr) {
expose(ptr);
reverse(ptr);
}
pointer get_ptr(const size_type i) noexcept { return nodes.data() + 1 + i; }
public:
link_cut_tree() : link_cut_tree(0) {}
explicit link_cut_tree(const size_type size,
const value_structure &x = value_structure(),
const operator_structure &y = operator_structure(),
const modifier_type &z = modifier_type())
: size_(size), vf(x), of(y), mf(z) {
nodes.reserve(size_ + 1);
nodes.emplace_back(vf.identity(), of.identity());
nil()->left = nil()->right = nil()->parent = nil();
nodes.resize(size_ + 1, nodes.front());
}
template<class InputIter>
link_cut_tree(InputIter first, InputIter last, const value_structure &x = value_structure(),
const operator_structure &y = operator_structure(),
const modifier_type &z = modifier_type()) :vf(x), of(y), mf(z) {
nodes.emplace_back(vf.identity(), of.identity());
for (;first != last;++first)
nodes.emplace_back(*first, of.identity());
const pointer n = nil();
for (auto &e : nodes)
e.left = e.right = e.parent = n;
size_ = nodes.size() - 1;
}
bool empty() const noexcept { return !size_; }
size_type size() const noexcept { return size_; }
bool connected(const size_type v, const size_type u) {
assert(v < size());
assert(u < size());
expose(get_ptr(v));
expose(get_ptr(u));
return nodes[v + 1].parent != nil() || v == u;
}
value_type fold(const size_type v, const size_type u) {
assert(v < size());
assert(u < size());
assert(connected(v, u));
reroot(get_ptr(v));
expose(get_ptr(u));
return nodes[u + 1].sum;
}
void link(const size_type parent, const size_type child) {
assert(parent < size());
assert(child < size());
assert(!connected(parent, child));
reroot(get_ptr(child));
nodes[child + 1].parent = get_ptr(parent);
}
void cut(const size_type v) {
assert(v < size());
expose(get_ptr(v));
nodes[v + 1].left->parent = nil();
nodes[v + 1].left = nil();
nodes[v + 1].sum = nodes[v + 1].value;
}
void update(const size_type v, const size_type u, const operator_type &data) {
assert(v < size());
assert(u < size());
assert(connected(v, u));
reroot(get_ptr(v));
expose(get_ptr(u));
nodes[u + 1].lazy = data;
}
template <class F> void update(const size_type v, const F &f) {
assert(v < size());
expose(get_ptr(v));
nodes[v + 1].value = f(nodes[v + 1].value);
calc(get_ptr(v));
}
};
template <class V, class O, class M>
link_cut_tree<V, O, M> make_lctree(const ::std::size_t size, const V &v,
const O &o, const M &m) {
return link_cut_tree<V, O, M>(size, v, o, m);
}
#include <cstdint>
template <::std::uint_fast32_t MODULO> class modint {
using uint32 = ::std::uint_fast32_t;
using uint64 = ::std::uint_fast64_t;
public:
using value_type = uint32;
uint32 a;
modint() : a(0) {}
modint(const uint32 x) : a(x) {}
modint operator+(const modint &o) const {
return a + o.a < MODULO ? modint(a + o.a) : modint(a + o.a - MODULO);
}
modint operator-(const modint &o) const {
return modint(a < o.a ? a + MODULO - o.a : a - o.a);
}
modint operator*(const modint &o) const {
return modint(static_cast<uint64>(a) * o.a % MODULO);
}
modint operator/(const modint &o) const {
return modint(static_cast<uint64>(a) * ~o % MODULO);
}
modint &operator+=(const modint &o) { return *this = *this + o; }
modint &operator-=(const modint &o) { return *this = *this - o; }
modint &operator*=(const modint &o) { return *this = *this * o; }
modint &operator/=(const modint &o) { return *this = *this / o; }
modint operator~() const { return pow(MODULO - 2); }
modint operator-() const { return a ? modint(MODULO - a) : modint(); }
modint operator++() { return a == MODULO - 1 ? a = 0 : ++a, *this; }
modint operator--() { return a ? --a : a = MODULO - 1, *this; }
bool operator==(const modint &o) const { return a == o.a; }
bool operator!=(const modint &o) const { return a != o.a; }
bool operator<(const modint &o) const { return a < o.a; }
bool operator<=(const modint &o) const { return a <= o.a; }
bool operator>(const modint &o) const { return a > o.a; }
bool operator>=(const modint &o) const { return a >= o.a; }
explicit operator bool() const { return a; }
explicit operator uint32() const { return a; }
modint pow(uint32 x) const {
uint64 t = a, u = 1;
while (x) {
if (x & 1)
u = u * t % MODULO;
t = (t * t) % MODULO;
x >>= 1;
}
return modint(u);
}
};
#include <algorithm>
#include <cstddef>
#include <limits>
#include <utility>
template <class T, class S = ::std::size_t> class sum_monoid {
public:
using size_type = S;
using value_type = ::std::pair<T, size_type>;
value_type operator()(const value_type &x, const value_type &y) const {
return value_type(x.first + y.first, x.second + y.second);
}
value_type identity() const { return value_type(T(0), S(0)); }
value_type reverse(const value_type &x) const { return x; }
};
template <class T> class plus_monoid {
public:
using value_type = T;
value_type operator()(const value_type &x, const value_type &y) const {
return x + y;
}
value_type identity() const { return value_type(0); }
value_type reverse(const value_type &x) const { return x; }
};
template <class T, class S> class sum_plus {
public:
::std::pair<T, S> operator()(const ::std::pair<T, S> &x, const T &y) const {
return ::std::pair<T, S>(x.first + y * x.second, x.second);
}
};
#include <cstdio>
#include <vector>
int main() {
using uint = unsigned int;
using mint = modint<1000000007>;
using pm = std::pair<mint, mint>;
uint n;
scanf("%u", &n);
std::vector<pm> s(n);
for (auto &e : s)
scanf("%u", &e.first.a);
for (auto &e : s)
scanf("%u", &e.second.a);
link_cut_tree<sum_monoid<mint, mint>, plus_monoid<mint>, sum_plus<mint, mint>>
T(s.begin(), s.end());
while (--n) {
uint a, b;
scanf("%u%u", &a, &b);
--a;--b;
T.link(a, b);
}
uint q;
scanf("%u", &q);
while (q--) {
uint t, x, y;
mint z;
scanf("%u%u%u", &t, &x, &y);
--x;--y;
if (t) {
printf("%u\n", T.fold(x, y).first.a);
}
else {
scanf("%u", &z.a);
T.update(x, y, mint(z));
}
}
return 0;
}
noshi_bot