結果
| 問題 |
No.9 モンスターのレベル上げ
|
| ユーザー |
くれちー
|
| 提出日時 | 2018-06-24 02:31:22 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 2,209 ms / 5,000 ms |
| コード長 | 10,221 bytes |
| コンパイル時間 | 25,789 ms |
| コンパイル使用メモリ | 388,184 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-06-30 18:38:26 |
| 合計ジャッジ時間 | 30,076 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 20 |
ソースコード
fn solve<R: BufRead, W: Write>(_reader: R, _writer: &mut W) {
let mut _scanner = Scanner::new(_reader);
#[allow(unused_macros)]
macro_rules! scan {
($t:ty) => {
_scanner.next::<$t>().unwrap()
};
($($t:ty),+) => {
($(scan!($t)),+)
};
($t:ty; $n:expr $(; $m:expr)*) => {{
let mut vec = Vec::with_capacity($n);
for _ in 0..$n {
vec.push(scan!($t $(; $m)*));
}
vec
}};
($t_0:ty, $t_1:ty; $n:expr) => {
scan!($t_0 = 0, $t_1 = 1; $n)
};
($t_0:ty, $t_1:ty, $t_2:ty; $n:expr) => {
scan!($t_0 = 0, $t_1 = 1, $t_2 = 2; $n)
};
($($t:ty = $i:tt),+; $n:expr) => {{
let mut vecs = ($(Vec::<$t>::with_capacity($n)),+);
for _ in 0..$n {$(
vecs.$i.push(scan!($t));
)+}
vecs
}};
}
#[allow(unused_macros)]
macro_rules! scan_iter {
($t:ty; $n:expr) => {
_scanner.take::<$t>($n).map(|x| x.unwrap())
};
}
#[allow(unused_macros)]
macro_rules! print {
($fmt:expr) => {
write!(_writer, $fmt).unwrap()
};
($fmt:expr, $($arg:tt)*) => {
write!(_writer, $fmt, $($arg)*).unwrap()
};
}
#[allow(unused_macros)]
macro_rules! println {
() => {
writeln!(_writer).unwrap()
};
($fmt:expr) => {
writeln!(_writer, $fmt).unwrap()
};
($fmt:expr, $($arg:tt)*) => {
writeln!(_writer, $fmt, $($arg)*).unwrap()
};
}
#[allow(unused_macros)]
macro_rules! eprint {
($fmt:expr) => {
#[cfg(debug_assertions)]
write!(::std::io::stderr(), $fmt).unwrap()
};
($fmt:expr, $($arg:tt)*) => {
#[cfg(debug_assertions)]
write!(::std::io::stderr(), $fmt, $($arg)*).unwrap()
};
}
#[allow(unused_macros)]
macro_rules! eprintln {
() => {
#[cfg(debug_assertions)]
writeln!(::std::io::stderr()).unwrap()
};
($fmt:expr) => {
#[cfg(debug_assertions)]
writeln!(::std::io::stderr(), $fmt).unwrap()
};
($fmt:expr, $($arg:tt)*) => {
#[cfg(debug_assertions)]
writeln!(::std::io::stderr(), $fmt, $($arg)*).unwrap()
};
}
#[allow(unused_macros)]
macro_rules! dump {
($($x:expr),+) => {
eprint!("[{}:{}] ", file!(), line!());
eprintln!(concat!($(stringify!($x), "={:?}; "),+), $($x),+);
};
}
use cmp::{OrdAssign, Reverse};
use data_structures::PairingHeap;
let n = scan!(usize);
let a = scan!(i32; n);
let b = scan!(i32; n);
let mut pq = PairingHeap::new();
let mut ans = i32::max_value();
for i in 0..n {
let mut cnt_max = 0;
pq.extend(a.iter().map(|&a_i| Reverse((a_i, 0))));
for j in 0..n {
let k = if i + j >= n { i + j - n } else { i + j };
let Reverse((x, cnt)) = pq.pop().unwrap();
cnt_max.max_assign(cnt + 1);
pq.push(Reverse((x + b[k] / 2, cnt + 1)));
}
ans.min_assign(cnt_max);
pq.clear();
}
println!("{}", ans);
}
const STACK_SIZE_MEBIBYTES: Option<usize> = None;
fn main() {
fn run_solver() {
let stdin = stdin();
let stdout = stdout();
#[cfg(debug_assertions)]
let mut writer = stdout.lock();
#[cfg(not(debug_assertions))]
let mut writer = ::std::io::BufWriter::new(stdout.lock());
solve(stdin.lock(), &mut writer);
writer.flush().unwrap();
}
if let Some(size) = STACK_SIZE_MEBIBYTES {
let builder = ::std::thread::Builder::new().stack_size(size * 1024 * 1024);
builder.spawn(run_solver).unwrap().join().unwrap();
} else {
run_solver();
}
}
use io::Scanner;
use std::io::{stdin, stdout, BufRead, Write};
pub mod cmp {
pub use self::ord_assign::*;
pub use self::reverse::*;
mod ord_assign {
use std::cmp::{max, min};
pub trait OrdAssign: Ord
where
Self: Copy,
{
fn min_assign(&mut self, other: Self) {
*self = min(*self, other);
}
fn max_assign(&mut self, other: Self) {
*self = max(*self, other);
}
}
impl<T: Ord + Copy> OrdAssign for T {}
}
mod reverse {
use std::cmp::Ordering;
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug, Hash)]
pub struct Reverse<T>(pub T);
impl<T: PartialOrd> PartialOrd for Reverse<T> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
other.0.partial_cmp(&self.0)
}
}
impl<T: Ord> Ord for Reverse<T> {
fn cmp(&self, other: &Self) -> Ordering {
other.0.cmp(&self.0)
}
}
}
}
pub mod data_structures {
pub use self::pairing_heap::PairingHeap;
mod pairing_heap {
use std::collections::LinkedList;
use std::mem::{replace, swap};
#[derive(Clone, Debug)]
pub struct PairingHeap<T> {
root: Option<Node<T>>,
len: usize,
}
#[derive(Clone, Debug)]
struct Node<T> {
key: T,
children: LinkedList<Option<Node<T>>>,
}
impl<T> Node<T> {
fn new(x: T) -> Self {
Node { key: x, children: LinkedList::new() }
}
}
impl<T: Ord> PairingHeap<T> {
pub fn new() -> Self {
PairingHeap { root: None, len: 0 }
}
pub fn peek(&self) -> Option<&T> {
self.root.as_ref().map(|node| &node.key)
}
pub fn pop(&mut self) -> Option<T> {
replace(&mut self.root, None).map(|node| {
self.root = Self::merge_list(node.children);
self.len -= 1;
node.key
})
}
pub fn push(&mut self, x: T) {
self.root = Self::merge(replace(&mut self.root, None), Some(Node::new(x)));
self.len += 1;
}
pub fn len(&self) -> usize {
self.len
}
pub fn is_empty(&self) -> bool {
debug_assert_eq!(self.root.is_none(), self.len == 0);
self.len == 0
}
pub fn clear(&mut self) {
self.root = None;
self.len = 0;
}
pub fn append(&mut self, other: &mut Self) {
self.root = Self::merge(replace(&mut self.root, None), replace(&mut other.root, None));
self.len += other.len;
other.len = 0;
debug_assert!(other.is_empty());
}
fn merge(l: Option<Node<T>>, r: Option<Node<T>>) -> Option<Node<T>> {
match (l, r) {
(l, None) => l,
(None, r) => r,
(Some(mut l), Some(mut r)) => {
if l.key < r.key {
swap(&mut l, &mut r);
}
debug_assert!(l.key >= r.key);
l.children.push_back(Some(r));
Some(l)
}
}
}
fn merge_list(mut xs: LinkedList<Option<Node<T>>>) -> Option<Node<T>> {
let mut acc = None;
loop {
match (xs.pop_back(), xs.pop_back()) {
(Some(l), Some(r)) => acc = Self::merge(Self::merge(l, r), acc),
(Some(x), None) => acc = Self::merge(x, acc),
(None, None) => break,
_ => unreachable!(),
}
}
acc
}
}
impl<T: Ord> Default for PairingHeap<T> {
fn default() -> Self {
Self::new()
}
}
impl<T: Ord> Extend<T> for PairingHeap<T> {
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
for x in iter {
self.push(x);
}
}
}
impl<T: Ord> IntoIterator for PairingHeap<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> IntoIter<T> {
IntoIter(self)
}
}
pub struct IntoIter<T>(PairingHeap<T>);
impl<T: Ord> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<T> {
self.0.pop()
}
}
}
}
pub mod io {
pub use self::scanner::*;
mod scanner {
use std::io::BufRead;
use std::marker::PhantomData;
use std::str::{from_utf8, FromStr};
pub struct Scanner<R> {
reader: R,
buffer: Vec<u8>,
position: usize,
}
impl<R: BufRead> Scanner<R> {
pub fn new(reader: R) -> Self {
Scanner { reader: reader, buffer: vec![], position: 0 }
}
pub fn next<T: Parse>(&mut self) -> Option<T> {
Parse::parse(self.next_bytes().unwrap_or(&[]))
}
pub fn take<T: Parse>(&mut self, n: usize) -> Take<R, T> {
Take { scanner: self, n: n, _marker: PhantomData }
}
pub fn next_bytes(&mut self) -> Option<&[u8]> {
if self.buffer.is_empty() {
self.read_line();
}
loop {
match self.buffer.get(self.position) {
Some(&b' ') => self.position += 1,
Some(&b'\n') => self.read_line(),
Some(_) => break,
None => return None,
}
}
let start = self.position;
loop {
match self.buffer.get(self.position) {
Some(&b' ') | Some(&b'\n') | None => break,
Some(_) => self.position += 1,
}
}
Some(&self.buffer[start..self.position])
}
fn read_line(&mut self) {
self.position = 0;
self.buffer.clear();
self.reader.read_until(b'\n', &mut self.buffer).unwrap();
}
}
pub struct Take<'a, R: 'a, T> {
scanner: &'a mut Scanner<R>,
n: usize,
_marker: PhantomData<fn() -> T>,
}
impl<'a, R: BufRead, T: Parse> Iterator for Take<'a, R, T> {
type Item = Option<T>;
fn next(&mut self) -> Option<Self::Item> {
if self.n > 0 {
self.n -= 1;
Some(self.scanner.next())
} else {
None
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.n, Some(self.n))
}
}
impl<'a, R: BufRead, T: Parse> ExactSizeIterator for Take<'a, R, T> {}
pub trait Parse: Sized {
fn parse(bytes: &[u8]) -> Option<Self>;
}
impl Parse for u8 {
fn parse(bytes: &[u8]) -> Option<Self> {
if bytes.len() == 1 {
Some(*unsafe { bytes.get_unchecked(0) })
} else {
None
}
}
}
macro_rules! parse_impl {
($($t:ident)+) => {$(
impl Parse for $t {
fn parse(bytes: &[u8]) -> Option<Self> {
from_utf8(bytes).ok().and_then(|s| $t::from_str(s).ok())
}
}
)+};
}
parse_impl! { i32 i64 isize u32 u64 usize String }
}
}
くれちー