結果
| 問題 | 
                            No.206 数の積集合を求めるクエリ
                             | 
                    
| コンテスト | |
| ユーザー | 
                             tempura_pp
                         | 
                    
| 提出日時 | 2018-06-24 18:18:44 | 
| 言語 | C++11(廃止可能性あり)  (gcc 13.3.0)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 365 ms / 7,000 ms | 
| コード長 | 2,016 bytes | 
| コンパイル時間 | 1,087 ms | 
| コンパイル使用メモリ | 95,676 KB | 
| 実行使用メモリ | 36,504 KB | 
| 最終ジャッジ日時 | 2024-06-30 22:33:18 | 
| 合計ジャッジ時間 | 7,060 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge1 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 28 | 
ソースコード
#include<iostream>
#include<string>
#include<algorithm>
#include<vector>
#include<iomanip>
#include<math.h>
#include<complex>
#include<queue>
#include<deque>
#include<map>
#include<set>
#include<bitset>
using namespace std;
#define REP(i,m,n) for(int i=(int)m ; i < (int) n ; i++ )
#define rep(i,n) REP(i,0,n)
typedef long long ll;
typedef pair<int,int> pint;
const int inf=1e9+7;
const ll longinf=1LL<<60 ;
const ll mod=1e9+7 ;
int dx[4]={1,0,-1,0} , dy[4]={0,1,0,-1} ;
typedef vector<complex<double>> poly;
const double pi=3.14159265358979;
poly dft(poly f,int n){
    if(n==1)return f;
    poly g[2];
    rep(i,2)g[i].resize(n/2);
    rep(i,n/2){
        g[0][i]=f[2*i];
        g[1][i]=f[2*i+1];
    }
    g[0]=dft(g[0],n/2);
    g[1]=dft(g[1],n/2);
    complex<double> zeta=complex<double>(cos(2*pi/n),sin(2*pi/n));
    complex<double> ret=1;
    rep(i,n){
        f[i]=g[0][i%(n/2)]+ret*g[1][i%(n/2)];
        ret*=zeta;
    }
    return f;
}
poly rdft(poly f,int n){
    if(n==1)return f;
    poly g[2];
    rep(i,2)g[i].resize(n/2);
    rep(i,n/2){
        g[0][i]=f[2*i];
        g[1][i]=f[2*i+1];
    }
    g[0]=rdft(g[0],n/2);
    g[1]=rdft(g[1],n/2);
    complex<double> zeta=complex<double>(cos(2*pi/n),-sin(2*pi/n));
    complex<double> ret=1;
    rep(i,n){
        f[i]=g[0][i%(n/2)]+ret*g[1][i%(n/2)];
        ret*=zeta;
    }
    return f;
}
poly fft(poly g,poly h){
    poly f;
    int m=(int)g.size()+h.size()+1;
    int sz=1;
    while(sz<m)sz*=2;
    f.resize(sz,0);
    g.resize(sz,0);
    h.resize(sz,0);
    g=dft(g,sz);
    h=dft(h,sz);
    rep(i,sz)f[i]=g[i]*h[i];
    f=rdft(f,sz);
    rep(i,sz)f[i]/=sz;
    return f;
}
int main(){
    int l,m,n;
    cin>>l>>m>>n;
    poly a,b;
    a.resize(n);
    b.resize(n);
    a.push_back(0);
    b.push_back(0);
    rep(i,l){
        int x;
        cin>>x;
        a[x]=1;
    }
    rep(i,m){
        int x;
        cin>>x;
        b[n-x]=1;
    }
    poly c=fft(a,b);
    int q;cin>>q;
    rep(i,q)cout<<(int)(c[n+i].real()+0.5)<<"\n";
}
            
            
            
        
            
tempura_pp