結果

問題 No.206 数の積集合を求めるクエリ
ユーザー drken1215drken1215
提出日時 2018-06-25 23:58:24
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 276 ms / 7,000 ms
コード長 2,703 bytes
コンパイル時間 696 ms
コンパイル使用メモリ 74,124 KB
実行使用メモリ 21,912 KB
最終ジャッジ日時 2024-06-30 22:45:15
合計ジャッジ時間 6,642 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 90 ms
20,648 KB
testcase_01 AC 90 ms
21,076 KB
testcase_02 AC 92 ms
20,244 KB
testcase_03 AC 90 ms
20,608 KB
testcase_04 AC 91 ms
20,240 KB
testcase_05 AC 90 ms
20,584 KB
testcase_06 AC 92 ms
20,888 KB
testcase_07 AC 91 ms
20,648 KB
testcase_08 AC 93 ms
21,488 KB
testcase_09 AC 92 ms
20,784 KB
testcase_10 AC 93 ms
20,100 KB
testcase_11 AC 91 ms
20,212 KB
testcase_12 AC 97 ms
21,072 KB
testcase_13 AC 94 ms
21,088 KB
testcase_14 AC 95 ms
21,604 KB
testcase_15 AC 96 ms
20,584 KB
testcase_16 AC 97 ms
20,544 KB
testcase_17 AC 147 ms
21,564 KB
testcase_18 AC 122 ms
20,944 KB
testcase_19 AC 142 ms
20,824 KB
testcase_20 AC 120 ms
21,912 KB
testcase_21 AC 127 ms
20,948 KB
testcase_22 AC 129 ms
20,432 KB
testcase_23 AC 142 ms
20,992 KB
testcase_24 AC 276 ms
20,864 KB
testcase_25 AC 269 ms
20,820 KB
testcase_26 AC 253 ms
20,820 KB
testcase_27 AC 208 ms
21,648 KB
testcase_28 AC 258 ms
20,948 KB
testcase_29 AC 256 ms
20,948 KB
testcase_30 AC 246 ms
20,588 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <vector>
#include <cmath>
using namespace std;

struct ComplexNumber {
    double real, imag;
    inline ComplexNumber& operator=(const ComplexNumber &c) {real = c.real; imag = c.imag; return *this;}
    friend inline ostream& operator<<(ostream &s, const ComplexNumber &c) {return s<<'<'<<c.real<<','<<c.imag<<'>';}
};
inline ComplexNumber make_comp(double a, double b) {
    ComplexNumber res = {a, b}; return res;
}
inline ComplexNumber operator + (const ComplexNumber &x, const ComplexNumber &y) {
    ComplexNumber res = {x.real + y.real, x.imag + y.imag}; return res;
}
inline ComplexNumber operator - (const ComplexNumber &x, const ComplexNumber &y) {
    ComplexNumber res = {x.real - y.real, x.imag - y.imag}; return res;
}
inline ComplexNumber operator * (const ComplexNumber &x, const ComplexNumber &y) {
    ComplexNumber res = {x.real * y.real - x.imag * y.imag, x.real * y.imag + x.imag * y.real}; return res;
}
inline ComplexNumber operator * (const ComplexNumber &x, double a) {
    ComplexNumber res = {x.real * a, x.imag * a}; return res;
}
inline ComplexNumber operator / (const ComplexNumber &x, double a) {
    ComplexNumber res = {x.real / a, x.imag / a}; return res;
}

const int MAX = 1<<18;
long long A[MAX], B[MAX], C[MAX];
ComplexNumber AT[MAX], BT[MAX], CT[MAX];

void FFT(ComplexNumber F[], bool inv) {
    int N = MAX;
    for (int t = N; t >= 2; t >>= 1) {
        double ang = acos(-1.0)*2/t;
        for (int i = 0; i < t/2; i++) {
            ComplexNumber w = {cos(ang*i), sin(ang*i)};
            if (inv) w.imag = -w.imag;
            for (int j = i; j < N; j += t) {
                ComplexNumber f1 = F[j] + F[j+t/2];
                ComplexNumber f2 = (F[j] - F[j+t/2]) * w;
                F[j] = f1;
                F[j+t/2] = f2;
            }
        }
    }
    for (int i = 1, j = 0; i < N; i++) {
        for (int k = N >> 1; k > (j ^= k); k >>= 1);
        if (i < j) swap(F[i], F[j]);
    }
}

void mult() {
    for (int i = 0; i < MAX; ++i) AT[i] = make_comp((double)A[i], 0.0);
    for (int i = 0; i < MAX; ++i) BT[i] = make_comp((double)B[i], 0.0);
    
    FFT(AT, false);
    FFT(BT, false);
    
    for (int i = 0; i < MAX; ++i) CT[i] = AT[i] * BT[i];
    
    FFT(CT, true);
    
    for (int i = 0; i < MAX; ++i) {
        CT[i] = CT[i] / MAX;
        C[i] = (long long)(CT[i].real + 0.5);
    }
}

int main() {
    int L, M, N, Q;
    cin >> L >> M >> N;
    for (int i = 0; i < L; ++i) {
        int a; cin >> a; A[a-1] = 1;
    }
    for (int i = 0; i < M; ++i) {
        int b; cin >> b; B[N-b] = 1;
    }
    mult();
    
    cin >> Q;
    for (int i = 0; i < Q; ++i) {
        cout << C[N-1+i] << endl;
    }
}
0